Results 1  10
of
5,662
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 483 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Robust convex optimization
 Mathematics of Operations Research
, 1998
"... We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we la ..."
Abstract

Cited by 416 (21 self)
 Add to MetaCart
) the corresponding robust convex program is either exactly, or approximately, a tractable problem which lends itself to efficient algorithms such as polynomial time interior point methods.
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 597 (24 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 865 (3 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing
Benchmarking Least Squares Support Vector Machine Classifiers
 NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract

Cited by 476 (46 self)
 Add to MetaCart
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set
Multiple kernel learning, conic duality, and the SMO algorithm
 In Proceedings of the 21st International Conference on Machine Learning (ICML
, 2004
"... While classical kernelbased classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimiz ..."
Abstract

Cited by 445 (31 self)
 Add to MetaCart
that the optimization of the coefficients of such a combination reduces to a convex optimization problem known as a quadraticallyconstrained quadratic program (QCQP). Unfortunately, current convex optimization toolboxes can solve this problem only for a small number of kernels and a small number of data points
The Power of Convex Relaxation: NearOptimal Matrix Completion
, 2009
"... This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a great number of applications, including the famous Netflix Prize and other similar questions in collaborative filtering. In ..."
Abstract

Cited by 359 (7 self)
 Add to MetaCart
to recover a matrix of rank r exactly by any method whatsoever (the information theoretic limit). More importantly, the paper shows that, under certain incoherence assumptions on the singular vectors of the matrix, recovery is possible by solving a convenient convex program as soon as the number of entries
On Projection Algorithms for Solving Convex Feasibility Problems
, 1996
"... Due to their extraordinary utility and broad applicability in many areas of classical mathematics and modern physical sciences (most notably, computerized tomography), algorithms for solving convex feasibility problems continue to receive great attention. To unify, generalize, and review some of the ..."
Abstract

Cited by 331 (43 self)
 Add to MetaCart
09, 49M45, 6502, 65J05, 90C25; Secondary 26B25, 41A65, 46C99, 46N10, 47N10, 52A05, 52A41, 65F10, 65K05, 90C90, 92C55. Key words and phrases. Angle between two subspaces, averaged mapping, Cimmino's method, computerized tomography, convex feasibility problem, convex function, convex
Graph implementations for nonsmooth convex programs
 Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences
, 2008
"... Summary. We describe graph implementations, a generic method for representing a convex function via its epigraph, described in a disciplined convex programming framework. This simple and natural idea allows a very wide variety of smooth and nonsmooth convex programs to be easily specified and effi ..."
Abstract

Cited by 263 (10 self)
 Add to MetaCart
Summary. We describe graph implementations, a generic method for representing a convex function via its epigraph, described in a disciplined convex programming framework. This simple and natural idea allows a very wide variety of smooth and nonsmooth convex programs to be easily specified
Results 1  10
of
5,662