Results 1  10
of
3,018,350
High dimensional graphs and variable selection with the Lasso
 ANNALS OF STATISTICS
, 2006
"... The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a ..."
Abstract

Cited by 751 (23 self)
 Add to MetaCart
show that the proposed neighborhood selection scheme is consistent for sparse highdimensional graphs. Consistency hinges on the choice of the penalty parameter. The oracle value for optimal prediction does not lead to a consistent neighborhood estimate. Controlling instead the probability of falsely
A HeteroskedasticityConsistent Covariance Matrix Estimator And A Direct Test For Heteroskedasticity
, 1980
"... This paper presents a parameter covariance matrix estimator which is consistent even when the disturbances of a linear regression model are heteroskedastic. This estimator does not depend on a formal model of the structure of the heteroskedasticity. By comparing the elements of the new estimator ..."
Abstract

Cited by 3060 (5 self)
 Add to MetaCart
This paper presents a parameter covariance matrix estimator which is consistent even when the disturbances of a linear regression model are heteroskedastic. This estimator does not depend on a formal model of the structure of the heteroskedasticity. By comparing the elements of the new estimator
Globally Consistent Range Scan Alignment for Environment Mapping
 AUTONOMOUS ROBOTS
, 1997
"... A robot exploring an unknown environmentmay need to build a world model from sensor measurements. In order to integrate all the frames of sensor data, it is essential to align the data properly. An incremental approach has been typically used in the past, in which each local frame of data is alig ..."
Abstract

Cited by 536 (8 self)
 Add to MetaCart
is aligned to a cumulative global model, and then merged to the model. Because different parts of the model are updated independently while there are errors in the registration, such an approachmay result in an inconsistent model. In this paper, we study the problem of consistent registration of multiple
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas of bootstrap inference. The paper discusses Monte Carlo tests, several types of bootstrap test, and bootstrap confidence intervals. Although bootstrapping often works well, it does not do so in every case.
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Estimating Wealth Effects without Expenditure Data— or Tears
 Policy Research Working Paper 1980, The World
, 1998
"... Abstract: We use the National Family Health Survey (NFHS) data collected in Indian states in 1992 and 1993 to estimate the relationship between household wealth and the probability a child (aged 6 to 14) is enrolled in school. A methodological difficulty to overcome is that the NFHS, modeled closely ..."
Abstract

Cited by 832 (16 self)
 Add to MetaCart
Abstract: We use the National Family Health Survey (NFHS) data collected in Indian states in 1992 and 1993 to estimate the relationship between household wealth and the probability a child (aged 6 to 14) is enrolled in school. A methodological difficulty to overcome is that the NFHS, modeled
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract

Cited by 2109 (30 self)
 Add to MetaCart
of distancebased and parsimony approaches. The reduction of computing time is dramatic in comparison with other maximumlikelihood packages, while the likelihood maximization ability tends to be higher. For example, only 12 min were required on a standard personal computer to analyze a data set consisting
Results 1  10
of
3,018,350