Results 1  10
of
6,061
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 475 (67 self)
 Add to MetaCart
the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae
Marching cubes: A high resolution 3D surface construction algorithm
 COMPUTER GRAPHICS
, 1987
"... We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divideandconquer approach to generate interslice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical d ..."
Abstract

Cited by 2696 (4 self)
 Add to MetaCart
We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divideandconquer approach to generate interslice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical
Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks
 In SenSys
, 2003
"... The dynamic and lossy nature of wireless communication poses major challenges to reliable, selforganizing multihop networks. These nonideal characteristics are more problematic with the primitive, lowpower radio transceivers found in sensor networks, and raise new issues that routing protocols mu ..."
Abstract

Cited by 781 (20 self)
 Add to MetaCart
must address. Link connectivity statistics should be captured dynamically through an efficient yet adaptive link estimator and routing decisions should exploit such connectivity statistics to achieve reliability. Link status and routing information must be maintained in a neighborhood table
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 502 (0 self)
 Add to MetaCart
We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible
HEED: A Hybrid, EnergyEfficient, Distributed Clustering Approach for Ad Hoc Sensor Networks
 IEEE TRANS. MOBILE COMPUTING
, 2004
"... Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. In this paper, we propose a novel distributed clustering approach for longlived ad hoc sensor networks. Our proposed ..."
Abstract

Cited by 590 (1 self)
 Add to MetaCart
bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data
ASCENT: Adaptive selfconfiguring sensor networks topologies
, 2004
"... Advances in microsensor and radio technology will enable small but smart sensors to be deployed for a wide range of environmental monitoring applications. The low pernode cost will allow these wireless networks of sensors and actuators to be densely distributed. The nodes in these dense networks w ..."
Abstract

Cited by 449 (15 self)
 Add to MetaCart
, and experimental measurements. We show that the system achieves linear increase in energy savings as a function of the density and the convergence time required in case of node failures while still providing adequate connectivity.
Flexible smoothing with Bsplines and penalties
 STATISTICAL SCIENCE
, 1996
"... Bsplines are attractive for nonparametric modelling, but choosing the optimal number and positions of knots is a complex task. Equidistant knots can be used, but their small and discrete number allows only limited control over smoothness and fit. We propose to use a relatively large number of knots ..."
Abstract

Cited by 405 (7 self)
 Add to MetaCart
of knots and a difference penalty on coefficients of adjacent Bsplines. We show connections to the familiar spline penalty on the integral of the squared second derivative. A short overview of Bsplines, their construction, and penalized likelihood is presented. We discuss properties of penalized B
Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory
, 2009
"... Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the number of nodes (N) and the average degree (k) of the network. ..."
Abstract

Cited by 26 (0 self)
 Add to MetaCart
Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the number of nodes (N) and the average degree (k) of the network
On the Minimum Node Degree and Connectivity of a Wireless Multihop Network
 ACM MobiHoc
, 2002
"... This paper investigates two fundamental characteristics of a wireless multihop network: its minimum node degree and its k–connectivity. Both topology attributes depend on the spatial distribution of the nodes and their transmission range. Using typical modeling assumptions — a random uniform distri ..."
Abstract

Cited by 318 (4 self)
 Add to MetaCart
distribution of the nodes and a simple link model — we derive an analytical expression that enables the determination of the required range r0 that creates, for a given node density ρ, an almost surely k–connected network. Equivalently, if the maximum r0 of the nodes is given, we can find out how many nodes
Impact of network density on Data Aggregation in wireless sensor networks
, 2001
"... Innetwork data aggregation is essential for wireless sensor networks where resources (e.g., bandwidth, energy) are limited. In a previously proposed data dissemination scheme, data is opportunistically aggregated at the intermediate nodes on a lowlatency tree which may not necessarily be energy ef ..."
Abstract

Cited by 321 (4 self)
 Add to MetaCart
efficient. A more energyefficient tree is a greedy tree which can be incrementally constructed by connecting each source to the closest point of the existing tree. In this paper, we propose a greedy approach for constructing a greedy aggregation tree to improve path sharing. We evaluated the performance
Results 1  10
of
6,061