Results 1 - 10
of
7,315
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract
-
Cited by 555 (22 self)
- Add to MetaCart
remarkable features making this attractive for low-rank matrix completion problems. The first is that the soft-thresholding operation is applied to a sparse matrix; the second is that the rank of the iterates {X k} is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract
-
Cited by 873 (26 self)
- Add to MetaCart
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can
Non-negative matrix factorization with sparseness constraints,”
- Journal of Machine Learning Research,
, 2004
"... Abstract Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. Although it has successfully been applied in several applications, it does not always result in parts-based representations. In this paper, we sho ..."
Abstract
-
Cited by 498 (0 self)
- Add to MetaCart
Abstract Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. Although it has successfully been applied in several applications, it does not always result in parts-based representations. In this paper, we
Missing value estimation methods for DNA microarrays
, 2001
"... Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clu ..."
Abstract
-
Cited by 477 (24 self)
- Add to MetaCart
Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K
Indexing by latent semantic analysis
- JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
, 1990
"... A new method for automatic indexing and retrieval is described. The approach is to take advantage of implicit higher-order structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries. The p ..."
Abstract
-
Cited by 3779 (35 self)
- Add to MetaCart
. The particular technique used is singular-value decomposition, in which a large term by document matrix is decomposed into a set of ca. 100 or-thogonal factors from which the original matrix can be approximated by linear combination. Documents are represented by ca. 100 item vectors of factor weights. Queries
Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
- J. Geophys. Res
, 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract
-
Cited by 800 (23 self)
- Add to MetaCart
. The unbounded error growth found in the extended Kalman filter, which is caused by an overly simplified closure in the error covariance equation, is completely eliminated. Open boundaries can be handled as long as the ocean model is well posed. Well-known numerical instabilities associated with the error
New results in linear filtering and prediction theory
- TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract
-
Cited by 607 (0 self)
- Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary
The Power of Convex Relaxation: Near-Optimal Matrix Completion
, 2009
"... This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a great number of applications, including the famous Netflix Prize and other similar questions in collaborative filtering. In ..."
Abstract
-
Cited by 359 (7 self)
- Add to MetaCart
This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a great number of applications, including the famous Netflix Prize and other similar questions in collaborative filtering
The Nonstochastic Multiarmed Bandit Problem
- SIAM JOURNAL OF COMPUTING
, 2002
"... In the multiarmed bandit problem, a gambler must decide which arm of K non-identical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the trade-off between exploration (trying out ..."
Abstract
-
Cited by 491 (34 self)
- Add to MetaCart
of the process generating the payoffs of the slot machines. We give a solution to the bandit problem in which an adversary, rather than a well-behaved stochastic process, has complete control over the payoffs. In a sequence of T plays, we prove that the per-round payoff of our algorithm approaches
Equivariant Adaptive Source Separation
- IEEE Trans. on Signal Processing
, 1996
"... Source separation consists in recovering a set of independent signals when only mixtures with unknown coefficients are observed. This paper introduces a class of adaptive algorithms for source separation which implements an adaptive version of equivariant estimation and is henceforth called EASI (Eq ..."
Abstract
-
Cited by 449 (9 self)
- Add to MetaCart
(Equivariant Adaptive Separation via Independence) . The EASI algorithms are based on the idea of serial updating: this specific form of matrix updates systematically yields algorithms with a simple, parallelizable structure, for both real and complex mixtures. Most importantly, the performance of an EASI
Results 1 - 10
of
7,315