• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 51,565
Next 10 →

An Efficient Boosting Algorithm for Combining Preferences

by Raj Dharmarajan Iyer , Jr. , 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract - Cited by 727 (18 self) - Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new

A combined corner and edge detector

by Chris Harris, Mike Stephens - In Proc. of Fourth Alvey Vision Conference , 1988
"... Consistency of image edge filtering is of prime importance for 3D interpretation of image sequences using feature tracking algorithms. To cater for image regions containing texture and isolated features, a combined corner and edge detector based on the local auto-correlation function is utilised, an ..."
Abstract - Cited by 2453 (2 self) - Add to MetaCart
Consistency of image edge filtering is of prime importance for 3D interpretation of image sequences using feature tracking algorithms. To cater for image regions containing texture and isolated features, a combined corner and edge detector based on the local auto-correlation function is utilised

The Quickhull algorithm for convex hulls

by C. Bradford Barber, David P. Dobkin, Hannu Huhdanpaa - ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE , 1996
"... The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the two-dimensional Quickhull Algorithm with the general-dimension Beneath-Beyond Algorithm. It is similar to the randomized, incremental algo ..."
Abstract - Cited by 713 (0 self) - Add to MetaCart
The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the two-dimensional Quickhull Algorithm with the general-dimension Beneath-Beyond Algorithm. It is similar to the randomized, incremental

Efficient Variants of the ICP Algorithm

by Szymon Rusinkiewicz, Marc Levoy - INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING , 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of three-dimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract - Cited by 718 (5 self) - Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of three-dimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points

Optimal Aggregation Algorithms for Middleware

by Ronald Fagin, Amnon Lotem , Moni Naor - IN PODS , 2001
"... Assume that each object in a database has m grades, or scores, one for each of m attributes. For example, an object can have a color grade, that tells how red it is, and a shape grade, that tells how round it is. For each attribute, there is a sorted list, which lists each object and its grade under ..."
Abstract - Cited by 717 (4 self) - Add to MetaCart
under that attribute, sorted by grade (highest grade first). There is some monotone aggregation function, or combining rule, such as min or average, that combines the individual grades to obtain an overall grade. To determine the top k objects (that have the best overall grades), the naive algorithm

An Algorithm for Tracking Multiple Targets

by Donald B. Reid - IEEE Transactions on Automatic Control , 1979
"... Abstract—An algorithm for tracking multiple targets In a cluttered algorithms. Clustering is the process of dividing the entire environment Is developed. The algorithm Is capable of Initiating tracks, set of targets and measurements into independent groups accounting for false or m[~clngreports, and ..."
Abstract - Cited by 596 (0 self) - Add to MetaCart
Abstract—An algorithm for tracking multiple targets In a cluttered algorithms. Clustering is the process of dividing the entire environment Is developed. The algorithm Is capable of Initiating tracks, set of targets and measurements into independent groups accounting for false or m

Fast Algorithms for Mining Association Rules

by Rakesh Agrawal, Ramakrishnan Srikant , 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract - Cited by 3612 (15 self) - Add to MetaCart
algorithms by factors ranging from three for small problems to more than an order of magnitude for large problems. We also show how the best features of the two proposed algorithms can be combined into a hybrid algorithm, called AprioriHybrid. Scale-up experiments show that AprioriHybrid scales linearly

Combining labeled and unlabeled data with co-training

by Avrim Blum, Tom Mitchell , 1998
"... We consider the problem of using a large unlabeled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the ta ..."
Abstract - Cited by 1633 (28 self) - Add to MetaCart
We consider the problem of using a large unlabeled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated

Boosting a Weak Learning Algorithm By Majority

by Yoav Freund , 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract - Cited by 516 (16 self) - Add to MetaCart
We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas

A training algorithm for optimal margin classifiers

by Bernhard E. Boser, et al. - PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY , 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract - Cited by 1865 (43 self) - Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters
Next 10 →
Results 1 - 10 of 51,565
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University