Results 1  10
of
1,082,280
MapReduce: Simplified Data Processing on Large Clusters
, 2004
"... MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with t ..."
Abstract

Cited by 3236 (3 self)
 Add to MetaCart
of MapReduce runs on a large cluster of commodity machines and is highly scalable: a typical MapReduce computation processes many terabytes of data on thousands of machines. Programmers find the system easy to use: hundreds of MapReduce programs have been implemented and upwards of one thousand Map
Clustering processes
"... The problem of clustering is considered, for the case when each data point is a sample generated by a stationary ergodic process. We propose a very natural asymptotic notion of consistency, and show that simple consistent algorithms exist, under most general nonparametric assumptions. The notion of ..."
Abstract

Cited by 16 (14 self)
 Add to MetaCart
The problem of clustering is considered, for the case when each data point is a sample generated by a stationary ergodic process. We propose a very natural asymptotic notion of consistency, and show that simple consistent algorithms exist, under most general nonparametric assumptions. The notion
Mean shift, mode seeking, and clustering
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... AbstractMean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some kmeans like clustering algorithms its special cases. It is shown that mean shift is a modeseeki ..."
Abstract

Cited by 620 (0 self)
 Add to MetaCart
seeking process on a surface constructed with a “shadow ” kernel. For Gaussian kernels, mean shift is a gradient mapping. Convergence is studied for mean shift iterations. Cluster analysis is treated as a deterministic problem of finding a fixed point of mean shift that characterizes the data. Applications
Adaptive clustering for mobile wireless networks
 IEEE Journal on Selected Areas in Communications
, 1997
"... This paper describes a selforganizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically reconfig ..."
Abstract

Cited by 556 (11 self)
 Add to MetaCart
This paper describes a selforganizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract

Cited by 511 (49 self)
 Add to MetaCart
Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all
Clustering by passing messages between data points
 Science
, 2007
"... Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initi ..."
Abstract

Cited by 688 (9 self)
 Add to MetaCart
Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 799 (14 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may
Hierarchical Dirichlet processes
 Journal of the American Statistical Association
, 2004
"... program. The authors wish to acknowledge helpful discussions with Lancelot James and Jim Pitman and the referees for useful comments. 1 We consider problems involving groups of data, where each observation within a group is a draw from a mixture model, and where it is desirable to share mixture comp ..."
Abstract

Cited by 927 (79 self)
 Add to MetaCart
components between groups. We assume that the number of mixture components is unknown a priori and is to be inferred from the data. In this setting it is natural to consider sets of Dirichlet processes, one for each group, where the wellknown clustering property of the Dirichlet process provides a
Scatter/Gather: A Clusterbased Approach to Browsing Large Document Collections
, 1992
"... Document clustering has not been well received as an information retrieval tool. Objections to its use fall into two main categories: first, that clustering is too slow for large corpora (with running time often quadratic in the number of documents); and second, that clustering does not appreciably ..."
Abstract

Cited by 772 (12 self)
 Add to MetaCart
Document clustering has not been well received as an information retrieval tool. Objections to its use fall into two main categories: first, that clustering is too slow for large corpora (with running time often quadratic in the number of documents); and second, that clustering does not appreciably
Results 1  10
of
1,082,280