Results 1  10
of
2,413,980
Close Approximations for Daublets and their Spectra
"... Abstract—This paper offers a new regard on compactly supported wavelets derived from FIR filters. Although being continuous wavelets, analytical formulation are lacking for such wavelets. Close approximations for daublets (Daubechies wavelets) and their spectra are introduced here. The frequency det ..."
Abstract
 Add to MetaCart
Abstract—This paper offers a new regard on compactly supported wavelets derived from FIR filters. Although being continuous wavelets, analytical formulation are lacking for such wavelets. Close approximations for daublets (Daubechies wavelets) and their spectra are introduced here. The frequency
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a
Close Approximations of Minimum Rectangular Coverings
 In FST & TCS'96, volume 1180 of LNCS
, 1996
"... . We consider the problem of covering arbitrary polygons with rectangles. The rectangles must lie entirely within the polygon. (This requires that the interior angles of the polygon are all greater than or equal to 90 degrees.) We want to cover the polygon with as few rectangles as possible. Thi ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
. This problem has an application in fabricating masks for integrated circuits. In this paper we will describe the first polynomial algorithm, guaranteeing an O(log n) approximation factor, provided that the n vertices of the input polygon are given as polynomially bounded integer coordinates. By the same
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
hard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma
Close Approximations of Minimum Rectangular Coverings ∗
, 1998
"... Abstract. We consider the problem of covering arbitrary polygons with rectangles. The rectangles must lie entirely within the polygon. (This requires that the interior angles of the polygon are all greater than or equal to 90 degrees.) We want to cover the polygon with as few rectangles as possible. ..."
Abstract
 Add to MetaCart
. This problem has an application in fabricating masks for integrated circuits. In this paper we will describe the first polynomial algorithm, guaranteeing an O(log n) approximation factor, provided that the n vertices of the input polygon are given as polynomially bounded integer coordinates. By the same
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
A Guided Tour to Approximate String Matching
 ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 584 (38 self)
 Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining the problem and its relevance, its statistical behavior, its history and current developments, and the central ideas of the algorithms and their complexities. We present a number of experiments to compare the performance of the different algorithms and show which are the best choices according to each case. We conclude with some future work directions and open problems.
Closedform solution of absolute orientation using unit quaternions
 J. Opt. Soc. Am. A
, 1987
"... Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the leastsquares pr ..."
Abstract

Cited by 973 (4 self)
 Add to MetaCart
Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the least
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae w.r.t the vertex set). Our graph property testing algorithms are probabilistic and make assertions which are correct with high probability, utilizing only poly(1=ffl) edgequeries into the graph, where ffl is the distance parameter. Moreover, the property testing algorithms can be used to efficiently (i.e., in time linear in the number of vertices) construct partitions of the graph which corre...
Results 1  10
of
2,413,980