Results 1  10
of
3,876
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 13236 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 1000 (13 self)
 Add to MetaCart
for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual
Benchmarking Least Squares Support Vector Machine Classifiers
 NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract

Cited by 476 (46 self)
 Add to MetaCart
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set
The Alignment Template Approach to Statistical Machine Translation
, 2004
"... A phrasebased statistical machine translation approach — the alignment template approach — is described. This translation approach allows for general manytomany relations between words. Thereby, the context of words is taken into account in the translation model, and local changes in word order f ..."
Abstract

Cited by 480 (26 self)
 Add to MetaCart
from source to target language can be learned explicitly. The model is described using a loglinear modeling approach, which is a generalization of the often used source–channel approach. Thereby, the model is easier to extend than classical statistical machine translation systems. We describe
Quantum complexity theory
 in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM
, 1993
"... Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This constructi ..."
Abstract

Cited by 574 (5 self)
 Add to MetaCart
–117]. This construction is substantially more complicated than the corresponding construction for classical Turing machines (TMs); in fact, even simple primitives such as looping, branching, and composition are not straightforward in the context of quantum Turing machines. We establish how these familiar primitives can
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 775 (21 self)
 Add to MetaCart
is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 653 (7 self)
 Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular
Online Learning with Kernels
, 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little u ..."
Abstract

Cited by 2831 (123 self)
 Add to MetaCart
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little
From Data Mining to Knowledge Discovery in Databases.
 AI Magazine,
, 1996
"... ■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in database ..."
Abstract

Cited by 538 (0 self)
 Add to MetaCart
in databases are related both to each other and to related fields, such as machine learning, statistics, and databases. The article mentions particular realworld applications, specific datamining techniques, challenges involved in realworld applications of knowledge discovery, and current and future
The Nonstochastic Multiarmed Bandit Problem
 SIAM JOURNAL OF COMPUTING
, 2002
"... In the multiarmed bandit problem, a gambler must decide which arm of K nonidentical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the tradeoff between exploration (trying out ..."
Abstract

Cited by 491 (34 self)
 Add to MetaCart
In the multiarmed bandit problem, a gambler must decide which arm of K nonidentical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the tradeoff between exploration (trying
Results 1  10
of
3,876