Results 1  10
of
806,698
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
Robust face recognition via sparse representation
 IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2008
"... We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signa ..."
Abstract

Cited by 916 (41 self)
 Add to MetaCart
is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as Eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation
Random Early Detection Gateways for Congestion Avoidance
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1993
"... This paper presents Random Early Detection (RED) gateways for congestion avoidance in packetswitched networks. The gateway detects incipient congestion by computing the average queue size. The gateway could notify connections of congestion either by dropping packets arriving at the gateway or by ..."
Abstract

Cited by 2699 (31 self)
 Add to MetaCart
or by setting a bit in packet headers. When the average queue size exceeds a preset threshold,the gateway drops or marks each arriving packet with a certain probability, where the exact probability is a function of the average queue size. RED gateways keep the average queue size low while allowing occasional
A Pairwise Key PreDistribution Scheme for Wireless Sensor Networks
, 2003
"... this paper, we provide a framework in which to study the security of key predistribution schemes, propose a new key predistribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an indepth analysis of our scheme in terms of network resili ..."
Abstract

Cited by 554 (18 self)
 Add to MetaCart
resilience and associated overhead. Our scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the probability that communications between any additional nodes are compromised is close to zero. This desirable property lowers the initial payoff of smaller
The sources and consequences of embeddedness for the economic performance of organizations: The network effect
 American Sociological Review
, 1996
"... In this paper, I attempt to advance the concept of embeddedness beyond the level of a programmatic statement by developing a formulation that specifies how embeddedness and network structure affect economic action. On the basis of existing theory and original ethnographies of 23 apparel firms, I dev ..."
Abstract

Cited by 709 (8 self)
 Add to MetaCart
economy. Results reveal that embeddedness is an exchange system with unique opportunities relative to markets and that firms organized in networks have higher survival chances than do firms which maintain arm'slength market relationships. The positive effect of embeddedness reaches a threshold
The Plenoptic Function and the Elements of Early Vision
 Computational Models of Visual Processing
, 1991
"... experiment. Electrophysiologists have described neurons in striate cortex that are selectively sensitive to certain visual properties; for reviews, see Hubel (1988) and DeValois and DeValois (1988). Psychophysicists have inferred the existence of channels that are tuned for certain visual properties ..."
Abstract

Cited by 573 (4 self)
 Add to MetaCart
experiment. Electrophysiologists have described neurons in striate cortex that are selectively sensitive to certain visual properties; for reviews, see Hubel (1988) and DeValois and DeValois (1988). Psychophysicists have inferred the existence of channels that are tuned for certain visual
Boosting a Weak Learning Algorithm By Majority
, 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract

Cited by 516 (15 self)
 Add to MetaCart
upper bounds known today. We show that the number of hypotheses that are combined by our algorithm is the smallest number possible. Other outcomes of our analysis are results regarding the representational power of threshold circuits, the relation between learnability and compression, and a method
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almostspherical sections in Banach space theory, and deviation bounds for the eigenvalues
The use of the area under the ROC curve in the evaluation of machine learning algorithms
 Pattern Recognition
, 1997
"... AbstractIn this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multilayer Percept ..."
Abstract

Cited by 664 (3 self)
 Add to MetaCart
accuracy: increased sensitivity in Analysis of Variance (ANOVA) tests; a standard error that decreased as both AUC and the number of test samples increased; decision threshold independent; and it is invariant to a priori class probabilities. The paper concludes with the recommendation that AUC be used
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract

Cited by 707 (18 self)
 Add to MetaCart
boosting algorithm for combining preferences called RankBoost. We also describe an efficient implementation of the algorithm for certain natural cases. We discuss two experiments we carried out to assess the performance of RankBoost. In the first experiment, we used the algorithm to combine different WWW
Results 1  10
of
806,698