Results 1  10
of
2,654,445
Coupled hidden Markov models for complex action recognition
, 1996
"... We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying twohanded actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and ..."
Abstract

Cited by 497 (22 self)
 Add to MetaCart
We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying twohanded actions. HMMs are perhaps the most successful framework in perceptual computing for modeling
An introduction to hidden Markov models
 IEEE ASSp Magazine
, 1986
"... The basic theory of Markov chains has been known to ..."
Abstract

Cited by 1110 (2 self)
 Add to MetaCart
The basic theory of Markov chains has been known to
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 619 (14 self)
 Add to MetaCart
based methods produce unreliable results. In this paper, we propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations. Mathematically, it can be shown
Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes
 J. MOL. BIOL
, 2001
"... ..."
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null
Factoring polynomials with rational coefficients
 MATH. ANN
, 1982
"... In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive polynomia ..."
Abstract

Cited by 982 (11 self)
 Add to MetaCart
to be factored, n = deg(f) is the degree of f, and for a polynomial ~ a ~ i with real coefficients a i. i An outline of the algorithm is as follows. First we find, for a suitable small prime number p, a padic irreducible factor h of f, to a certain precision. This is done with Berlekamp's algorithm
Factoring wavelet transforms into lifting steps
 J. Fourier Anal. Appl
, 1998
"... ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This dec ..."
Abstract

Cited by 573 (8 self)
 Add to MetaCart
. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is wellknown to algebraists (and expressed by the formula); it is also used in linear systems theory in the electrical engineering community. We
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
Evaluating the use of exploratory factor analysis in psychological research
 Psychological Methods
, 1999
"... Despite the widespread use of exploratory factor analysis in psychological research, researchers often make questionable decisions when conducting these analyses. This article reviews the major design and analytical decisions that must be made when conducting a factor analysis and notes that each of ..."
Abstract

Cited by 495 (4 self)
 Add to MetaCart
Despite the widespread use of exploratory factor analysis in psychological research, researchers often make questionable decisions when conducting these analyses. This article reviews the major design and analytical decisions that must be made when conducting a factor analysis and notes that each
Results 1  10
of
2,654,445