Results 1  10
of
853,469
Approximating Quadratic Programming With Bound Constraints
 Mathematical Programming
, 1997
"... We consider the problem of approximating the global maximum of a quadratic program (QP) with n variables subject to bound constraints. Based on the results of Goemans and Williamson [4] and Nesterov [6], we show that a 4=7 approximate solution can be obtained in polynomial time. Key words. Quadratic ..."
Abstract

Cited by 79 (13 self)
 Add to MetaCart
We consider the problem of approximating the global maximum of a quadratic program (QP) with n variables subject to bound constraints. Based on the results of Goemans and Williamson [4] and Nesterov [6], we show that a 4=7 approximate solution can be obtained in polynomial time. Key words
Constraint Networks
, 1992
"... Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract

Cited by 1149 (43 self)
 Add to MetaCart
Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint
Concurrent Constraint Programming
, 1993
"... This paper presents a new and very rich class of (concurrent) programming languages, based on the notion of comput.ing with parhal information, and the concommitant notions of consistency and entailment. ’ In this framework, computation emerges from the interaction of concurrently executing agent ..."
Abstract

Cited by 502 (16 self)
 Add to MetaCart
agents that communicate by placing, checking and instantiating constraints on shared variables. Such a view of computation is interesting in the context of programming languages because of the ability to represent and manipulate partial information about the domain of discourse, in the con
Constraint Logic Programming: A Survey
"... Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve in differe ..."
Abstract

Cited by 864 (25 self)
 Add to MetaCart
Constraint Logic Programming (CLP) is a merger of two declarative paradigms: constraint solving and logic programming. Although a relatively new field, CLP has progressed in several quite different directions. In particular, the early fundamental concepts have been adapted to better serve
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM Journal on Scientific Computing
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract

Cited by 557 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.
Plans And ResourceBounded Practical Reasoning
 COMPUTATIONAL INTELLIGENCE, 4(4):349355, 1988
, 1988
"... An architecture for a rational agent must allow for meansend reasoning, for the weighing of competing alternatives, and for interactions between these two forms of reasoning. Such an architecture must also address the problem of resource boundedness. We sketch a solution of the first problem that p ..."
Abstract

Cited by 485 (19 self)
 Add to MetaCart
that points the way to a solution of the second. In particular, we present a highlevel specification of the practicalreasoning component of an architecture for a resourcebounded rational agent. In this architecture, a major role of the agent's plans is to constrain the amount of further practical
TOTALVARIATION REGULARIZATION WITH BOUND CONSTRAINTS
, 2010
"... We present a new algorithm for boundconstrained totalvariation (TV) regularization that in comparison with its predecessors is simple, fast, and flexible. We use a splitting approach to decouple TV minimization from enforcing the constraints. Consequently, existing TV solvers can be employed with m ..."
Abstract
 Add to MetaCart
We present a new algorithm for boundconstrained totalvariation (TV) regularization that in comparison with its predecessors is simple, fast, and flexible. We use a splitting approach to decouple TV minimization from enforcing the constraints. Consequently, existing TV solvers can be employed
Occasionally Binding Zero Bound Constraints ∗
, 2011
"... NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff o ..."
Abstract
 Add to MetaCart
NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors. References in publications to the Finance and Economics Discussion Series (other than acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers. Optimal Fiscal and Monetary Policy With
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
Results 1  10
of
853,469