• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 36,724
Next 10 →

Keystroke Biometric Feature Extraction

by Dcsa Emerging, Information Technologies, James F. Kile, Donald Little, Samir Shah
"... by ..."
Abstract - Add to MetaCart
Abstract not found

A Novel Biometric Feature Extraction Algorithm using Two Dimensional Fisherface in 2DPCA subspace for Face Recognition

by R. M. Mutelo, W. L. Woo, S. S. Dlay
"... Abstract:- This paper describes a novel algorithm, 2D-FPCA, for face feature extraction and representation. The new algorithm fuses the two dimensional Fisherface method with the two dimensional principal component analysis (2DPCA). Our algorithm operates on the two dimensional image matrices. There ..."
Abstract - Add to MetaCart
Abstract:- This paper describes a novel algorithm, 2D-FPCA, for face feature extraction and representation. The new algorithm fuses the two dimensional Fisherface method with the two dimensional principal component analysis (2DPCA). Our algorithm operates on the two dimensional image matrices

Fuzzy extractors: How to generate strong keys from biometrics and other noisy data

by Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, Adam Smith , 2008
"... We provide formal definitions and efficient secure techniques for • turning noisy information into keys usable for any cryptographic application, and, in particular, • reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying mater ..."
Abstract - Cited by 535 (38 self) - Add to MetaCart
We provide formal definitions and efficient secure techniques for • turning noisy information into keys usable for any cryptographic application, and, in particular, • reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying

Distinctive Image Features from Scale-Invariant Keypoints

by David G. Lowe , 2003
"... This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substa ..."
Abstract - Cited by 8955 (21 self) - Add to MetaCart
This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a

Maximum entropy markov models for information extraction and segmentation

by Andrew McCallum, Dayne Freitag, Fernando Pereira , 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many text-related tasks, such as part-of-speech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract - Cited by 561 (18 self) - Add to MetaCart
Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many text-related tasks, such as part-of-speech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled

Local features and kernels for classification of texture and object categories: a comprehensive study

by J. Zhang, S. Lazebnik, C. Schmid - International Journal of Computer Vision , 2007
"... Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations an ..."
Abstract - Cited by 653 (34 self) - Add to MetaCart
Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations

Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features

by Wolfgang Kabsch, Christian Sander , 1983
"... For a successful analysis of the relation between amino acid sequence and protein structure, an unambiguous and physically meaningful definition of secondary structure is essential. We have developed a set of simple and physically motivated criteria for secondary structure, programmed as a pattern-r ..."
Abstract - Cited by 2096 (5 self) - Add to MetaCart
-recognition process of hydrogen-bonded and geometrical features extracted from x-ray coordinates. Cooperative secondary structure is recognized as repeats of the elementary hydrogen-bonding patterns “turn ” and “bridge. ” Repeating turns are “helices, ” repeating bridges are “ladders, ” connected ladders are “sheets

Incorporating non-local information into information extraction systems by Gibbs sampling

by Jenny Rose Finkel, Trond Grenager, Christopher Manning - IN ACL , 2005
"... Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling, ..."
Abstract - Cited by 730 (25 self) - Add to MetaCart
Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling

Face description with local binary patterns: Application to face recognition

by Abdenour Hadid, Senior Member - IEEE Trans. Pattern Analysis and Machine Intelligence , 2006
"... Abstract—This paper presents a novel and efficient facial image representation based on local binary pattern (LBP) texture features. The face image is divided into several regions from which the LBP feature distributions are extracted and concatenated into an enhanced feature vector to be used as a ..."
Abstract - Cited by 526 (27 self) - Add to MetaCart
Abstract—This paper presents a novel and efficient facial image representation based on local binary pattern (LBP) texture features. The face image is divided into several regions from which the LBP feature distributions are extracted and concatenated into an enhanced feature vector to be used as a

Information Theory and Statistics

by S. Kullback , 1968
"... Entropy and relative entropy are proposed as features extracted from symbol sequences. Firstly, a proper Iterated Function System is driven by the sequence, producing a fractaMike representation (CSR) with a low computational cost. Then, two entropic measures are applied to the CSR histogram of th ..."
Abstract - Cited by 1805 (2 self) - Add to MetaCart
Entropy and relative entropy are proposed as features extracted from symbol sequences. Firstly, a proper Iterated Function System is driven by the sequence, producing a fractaMike representation (CSR) with a low computational cost. Then, two entropic measures are applied to the CSR histogram
Next 10 →
Results 1 - 10 of 36,724
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University