Results 1  10
of
6,039
Aggregating crowdsourced binary ratings
, 2013
"... In this paper we analyze a crowdsourcing system consisting of a set of users and a set of binary choice questions. Each user has an unknown, fixed, reliability that determines the user’s error rate in answering questions. The problem is to determine the truth values of the questions solely based on ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
In this paper we analyze a crowdsourcing system consisting of a set of users and a set of binary choice questions. Each user has an unknown, fixed, reliability that determines the user’s error rate in answering questions. The problem is to determine the truth values of the questions solely based
Iterative decoding of binary block and convolutional codes
 IEEE TRANS. INFORM. THEORY
, 1996
"... Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the soft chann ..."
Abstract

Cited by 610 (43 self)
 Add to MetaCart
channel and a priori inputs, and the extrinsic value. The extrinsic value is used as an a priori value for the next iteration. Decoding algorithms in the loglikelihood domain are given not only for convolutional codes hut also for any linear binary systematic block code. The iteration is controlled by a
Near Shannon limit errorcorrecting coding and decoding
, 1993
"... Abstract This paper deals with a new class of convolutional codes called Turbocodes, whose performances in terms of Bit Error Rate (BER) are close to the SHANNON limit. The TurboCode encoder is built using a parallel concatenation of two Recursive Systematic Convolutional codes and the associated ..."
Abstract

Cited by 1776 (6 self)
 Add to MetaCart
and the associated decoder, using a feedback decoding rule, is implemented as P pipelined identical elementary decoders. Consider a binary rate R=1/2 convolutional encoder with constraint length K and memory M=K1. The input to the encoder at time k is a bit dk and the corresponding codeword
The ratedistortion function for source coding with side information at the decoder
 IEEE Trans. Inform. Theory
, 1976
"... AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a seque ..."
Abstract

Cited by 1060 (1 self)
 Add to MetaCart
AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 750 (23 self)
 Add to MetaCart
. The decoding of both codes can be tackled with a practical sumproduct algorithm. We prove that these codes are "very good," in that sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit. This result holds not only for the binarysymmetric channel
The Capacity of LowDensity ParityCheck Codes Under MessagePassing Decoding
, 2001
"... In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chos ..."
Abstract

Cited by 574 (9 self)
 Add to MetaCart
In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly
Distance metric learning for large margin nearest neighbor classification
 In NIPS
, 2006
"... We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven ..."
Abstract

Cited by 695 (14 self)
 Add to MetaCart
. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to significant improvements in kNN classification—for example, achieving a test error rate of 1.3 % on the MNIST handwritten digits. As in support vector machines (SVMs), the learning problem reduces to a
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
with a single loop • Unless all the conditional probabilities are deter ministic, belief propagation will converge. • There is an analytic expression relating the cor rect marginals to the loopy marginals. The ap proximation error is related to the convergence rate of the messages the faster
Secret Key Agreement by Public Discussion From Common Information
 IEEE Transactions on Information Theory
, 1993
"... . The problem of generating a shared secret key S by two parties knowing dependent random variables X and Y , respectively, but not sharing a secret key initially, is considered. An enemy who knows the random variable Z, jointly distributed with X and Y according to some probability distribution PX ..."
Abstract

Cited by 434 (18 self)
 Add to MetaCart
PXY Z , can also receive all messages exchanged by the two parties over a public channel. The goal of a protocol is that the enemy obtains at most a negligible amount of information about S. Upper bounds on H(S) as a function of PXY Z are presented. Lower bounds on the rate H(S)=N (as N !1
1 Serial to Parallel Conversion of Pulserate Signals using Binary Rate Multiplier Principle
"... Abstract: A novel representation of process variables as frequency signals is presented in this paper. Traditional analog computers and transfer function analyzers built using the binary rate multiplier principle did not explicitly consider negative numbers. It is proposed to introduce a twopin sy ..."
Abstract
 Add to MetaCart
Abstract: A novel representation of process variables as frequency signals is presented in this paper. Traditional analog computers and transfer function analyzers built using the binary rate multiplier principle did not explicitly consider negative numbers. It is proposed to introduce a two
Results 1  10
of
6,039