• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 689,724
Next 10 →

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

by Erin L. Allwein, Robert E. Schapire, Yoram Singer - JOURNAL OF MACHINE LEARNING RESEARCH , 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a margin-based binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract - Cited by 560 (20 self) - Add to MetaCart
We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a margin-based binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class

Valgrind: A framework for heavyweight dynamic binary instrumentation

by Nicholas Nethercote, Julian Seward - In Proceedings of the 2007 Programming Language Design and Implementation Conference , 2007
"... Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI ha ..."
Abstract - Cited by 545 (5 self) - Add to MetaCart
Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI

Iterative decoding of binary block and convolutional codes

by Joachim Hagenauer, Elke Offer, Lutz Papke - IEEE Trans. Inform. Theory , 1996
"... Abstract- Iterative decoding of two-dimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using log-likelihood algebra, we show that any decoder can he used which accepts soft inputs-including a priori values-and delivers soft outputs that can he split into three terms: the ..."
Abstract - Cited by 600 (43 self) - Add to MetaCart
: the soft channel and a priori inputs, and the extrinsic value. The extrinsic value is used as an a priori value for the next iteration. Decoding algorithms in the log-likelihood domain are given not only for convolutional codes hut also for any linear binary systematic block code. The iteration

Face description with local binary patterns: Application to face recognition

by Abdenour Hadid, Senior Member - IEEE Trans. Pattern Analysis and Machine Intelligence , 2006
"... Abstract—This paper presents a novel and efficient facial image representation based on local binary pattern (LBP) texture features. The face image is divided into several regions from which the LBP feature distributions are extracted and concatenated into an enhanced feature vector to be used as a ..."
Abstract - Cited by 509 (27 self) - Add to MetaCart
face descriptor. The performance of the proposed method is assessed in the face recognition problem under different challenges. Other applications and several extensions are also discussed. Index Terms—Facial image representation, local binary pattern, component-based face recognition, texture features

Multiresolution grayscale and rotation invariant texture classification with local binary patterns

by Timo Ojala, Matti Pietikäinen, Topi Mäenpää - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2002
"... This paper presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain ..."
Abstract - Cited by 1231 (37 self) - Add to MetaCart
This paper presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing

Graphcuts for General Quadratic Binary Problems

by Hoyt Koepke, Marina Meila, Robert Johnson , 2011
"... We propose a novel approach to optimizing unconstrained quadratic binary problems (QBP) and binary MRFs based on discrete, submodular majorization of the original problem that can be solved efficiently using graph cuts. This yields an efficient algorithm that is appropriate for quickly finding a goo ..."
Abstract - Add to MetaCart
We propose a novel approach to optimizing unconstrained quadratic binary problems (QBP) and binary MRFs based on discrete, submodular majorization of the original problem that can be solved efficiently using graph cuts. This yields an efficient algorithm that is appropriate for quickly finding a

Where the REALLY Hard Problems Are

by Peter Cheeseman, Bob Kanefsky, William M. Taylor - IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI-91),VOLUME 1 , 1991
"... It is well known that for many NP-complete problems, such as K-Sat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NP-complete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract - Cited by 681 (1 self) - Add to MetaCart
It is well known that for many NP-complete problems, such as K-Sat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NP-complete problems can be summarized by at least one "order parameter", and that the hard

Irrelevant Features and the Subset Selection Problem

by George H. John, Ron Kohavi, Karl Pfleger - MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL , 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small high-accuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract - Cited by 741 (26 self) - Add to MetaCart
We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small high-accuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features

Solving multiclass learning problems via error-correcting output codes

by Thomas G. Dietterich, Ghulum Bakiri - JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH , 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract - Cited by 730 (8 self) - Add to MetaCart
learning problems include direct application of multiclass algorithms such as the decision-tree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed

Self-adjusting binary search trees

by Daniel Dominic Sleator, Robert Endre Tarjan , 1985
"... The splay tree, a self-adjusting form of binary search tree, is developed and analyzed. The binary search tree is a data structure for representing tables and lists so that accessing, inserting, and deleting items is easy. On an n-node splay tree, all the standard search tree operations have an am ..."
Abstract - Cited by 435 (19 self) - Add to MetaCart
The splay tree, a self-adjusting form of binary search tree, is developed and analyzed. The binary search tree is a data structure for representing tables and lists so that accessing, inserting, and deleting items is easy. On an n-node splay tree, all the standard search tree operations have
Next 10 →
Results 1 - 10 of 689,724
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University