• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 17,930
Next 10 →

Tree exploration for Bayesian RL exploration

by Christos Dimitrakakis - In: Proceedings of the international conference on computational intelligence for modelling, control and automation, (CIMCA , 2008
"... Research in reinforcement learning has produced algorithms for optimal decision making under uncertainty that fall within two main types. The first employs a Bayesian framework, where optimality improves with increased computational time. This is because the resulting planning task takes the form of ..."
Abstract - Cited by 11 (6 self) - Add to MetaCart
Research in reinforcement learning has produced algorithms for optimal decision making under uncertainty that fall within two main types. The first employs a Bayesian framework, where optimality improves with increased computational time. This is because the resulting planning task takes the form

A Bayesian method for the induction of probabilistic networks from data

by Gregory F. Cooper, EDWARD HERSKOVITS - MACHINE LEARNING , 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract - Cited by 1381 (32 self) - Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction

Inductive Logic Programming: Theory and Methods

by Stephen Muggleton, Luc De Raedt - JOURNAL OF LOGIC PROGRAMMING , 1994
"... ..."
Abstract - Cited by 530 (46 self) - Add to MetaCart
Abstract not found

Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative

by Donald W. K. Andrews, Werner Ploberger , 1992
"... ..."
Abstract - Cited by 604 (11 self) - Add to MetaCart
Abstract not found

Bagging Predictors

by Leo Breiman, Leo Breiman - Machine Learning , 1996
"... Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making ..."
Abstract - Cited by 3574 (1 self) - Add to MetaCart
Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy. 1. Introduction A learning set of L consists of data f(y n ; x n ), n = 1; : : : ; Ng where the y's are either class labels or a numerical response. We have a procedure for using this learning set to form a predictor '(x; L) --- if the input is x we ...

Asset Prices in an exchange economy

by Robert E. Lucas, Jr. - ECONOMETRICA , 1978
"... ..."
Abstract - Cited by 590 (0 self) - Add to MetaCart
Abstract not found

A Course in Game Theory

by Martin J. Osborne , 1994
"... ..."
Abstract - Cited by 2571 (6 self) - Add to MetaCart
Abstract not found

Graphical models, exponential families, and variational inference

by Martin J. Wainwright, Michael I. Jordan , 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract - Cited by 800 (26 self) - Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. We describe how a wide varietyof algorithms — among them sum-product, cluster variational methods, expectation-propagation, mean field methods, max-product and linear programming relaxation, as well as conic programming relaxations — can all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.

Prospect theory: An analysis of decisions under risk

by Daniel Kahneman, Amos Tversky - Econometrica , 1979
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract - Cited by 5935 (24 self) - Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

Planning Algorithms

by Steven M LaValle , 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract - Cited by 1108 (51 self) - Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning under uncertainty, sensor-based planning, visibility, decision-theoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Next 10 →
Results 1 - 10 of 17,930
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University