• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 25,041
Next 10 →

Reversible jump Markov chain Monte Carlo computation and Bayesian model determination

by Peter J. Green - Biometrika , 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract - Cited by 1345 (23 self) - Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model

WinBUGS -- a Bayesian modelling framework: concepts, structure, and extensibility

by David J. Lunn, Andrew Thomas, Nicky Best, David Spiegelhalter - STATISTICS AND COMPUTING , 2000
"... WinBUGS is a fully extensible modular framework for constructing and analysing Bayesian full probability models. Models may be specified either textually via the BUGS language or pictorially using a graphical interface called DoodleBUGS. WinBUGS processes the model specification and constructs an ob ..."
Abstract - Cited by 430 (6 self) - Add to MetaCart
WinBUGS is a fully extensible modular framework for constructing and analysing Bayesian full probability models. Models may be specified either textually via the BUGS language or pictorially using a graphical interface called DoodleBUGS. WinBUGS processes the model specification and constructs

Bayesian Model Averaging: A Tutorial

by Jennifer A. Hoeting , David Madigan, Adrian E. Raftery, Chris T. Volinsky - STATISTICAL SCIENCE , 1999
"... ..."
Abstract - Cited by 303 (4 self) - Add to MetaCart
Abstract not found

Bayesian Model Selection in Social Research (with Discussion by Andrew Gelman & Donald B. Rubin, and Robert M. Hauser, and a Rejoinder)

by Adrian Raftery - SOCIOLOGICAL METHODOLOGY 1995, EDITED BY PETER V. MARSDEN, CAMBRIDGE,; MASS.: BLACKWELLS. , 1995
"... It is argued that P-values and the tests based upon them give unsatisfactory results, especially in large samples. It is shown that, in regression, when there are many candidate independent variables, standard variable selection procedures can give very misleading results. Also, by selecting a singl ..."
Abstract - Cited by 585 (21 self) - Add to MetaCart
single model, they ignore model uncertainty and so underestimate the uncertainty about quantities of interest. The Bayesian approach to hypothesis testing, model selection and accounting for model uncertainty is presented. Implementing this is straightforward using the simple and accurate BIC

Bayesian Model Averaging for Linear Regression Models

by Adrian E. Raftery, Jennifer A. Hoeting, David Madigan - Journal of the American Statistical Association , 1997
"... We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem in ..."
Abstract - Cited by 325 (17 self) - Add to MetaCart
We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem

Bayesian Interpolation

by David J.C. MacKay - NEURAL COMPUTATION , 1991
"... Although Bayesian analysis has been in use since Laplace, the Bayesian method of model--comparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and model--comparison is demonstrated by studying the inference problem of interpolating noisy data. T ..."
Abstract - Cited by 728 (17 self) - Add to MetaCart
Although Bayesian analysis has been in use since Laplace, the Bayesian method of model--comparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and model--comparison is demonstrated by studying the inference problem of interpolating noisy data

Theory-based Bayesian models of inductive learning and reasoning

by Joshua B. Tenenbaum, Charles Kemp, Patrick Shafto - Trends in Cognitive Sciences , 2006
"... Theory-based Bayesian models of inductive reasoning 2 Theory-based Bayesian models of inductive reasoning ..."
Abstract - Cited by 151 (26 self) - Add to MetaCart
Theory-based Bayesian models of inductive reasoning 2 Theory-based Bayesian models of inductive reasoning

PAC-Bayesian Model Averaging

by David A. McAllester - In Proceedings of the Twelfth Annual Conference on Computational Learning Theory , 1999
"... PAC-Bayesian learning methods combine the informative priors of Bayesian methods with distribution-free PAC guarantees. Building on earlier methods for PAC-Bayesian model selection, this paper presents a method for PAC-Bayesian model averaging. The main result is a bound on generalization error of a ..."
Abstract - Cited by 99 (3 self) - Add to MetaCart
PAC-Bayesian learning methods combine the informative priors of Bayesian methods with distribution-free PAC guarantees. Building on earlier methods for PAC-Bayesian model selection, this paper presents a method for PAC-Bayesian model averaging. The main result is a bound on generalization error

Bayesian Analysis of Stochastic Volatility Models

by Eric Jacquier, Nicholas G. Polson, Peter E. Rossi , 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener- alized ARCH ..."
Abstract - Cited by 601 (26 self) - Add to MetaCart
this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener- alized

Bayesian Data Analysis

by Andrew Gelman, Christian Robert, Nicolas Chopin, Judith Rousseau , 1995
"... I actually own a copy of Harold Jeffreys’s Theory of Probability but have only read small bits of it, most recently over a decade ago to confirm that, indeed, Jeffreys was not too proud to use a classical chi-squared p-value when he wanted to check the misfit of a model to data (Gelman, Meng and Ste ..."
Abstract - Cited by 2194 (63 self) - Add to MetaCart
I actually own a copy of Harold Jeffreys’s Theory of Probability but have only read small bits of it, most recently over a decade ago to confirm that, indeed, Jeffreys was not too proud to use a classical chi-squared p-value when he wanted to check the misfit of a model to data (Gelman, Meng
Next 10 →
Results 1 - 10 of 25,041
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University