Results 1  10
of
137,398
Skip Lists: A Probabilistic Alternative to Balanced Trees
, 1990
"... Skip lists are data structures thla t use probabilistic balancing rather than strictly enforced balancing. As a result, the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees. ..."
Abstract

Cited by 412 (1 self)
 Add to MetaCart
Skip lists are data structures thla t use probabilistic balancing rather than strictly enforced balancing. As a result, the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees.
General Balanced Trees
"... We show that, in order to achieve efficient maintenance of a balanced binary search tree, no shape restriction other than a logarithmic height is required. The obtained class of trees, general balanced trees, may be maintained at a logarithmic amortized cost with no balance information stored in t ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
We show that, in order to achieve efficient maintenance of a balanced binary search tree, no shape restriction other than a logarithmic height is required. The obtained class of trees, general balanced trees, may be maintained at a logarithmic amortized cost with no balance information stored
RankBalanced Trees
"... Since the invention of AVL trees in 1962, a wide variety of ways to balance binary search trees have been proposed. Notable are redblack trees, in which bottomup rebalancing after an insertion or deletion takes O(1) amortized time and O(1) rotations worstcase. But the design space of balanced t ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Since the invention of AVL trees in 1962, a wide variety of ways to balance binary search trees have been proposed. Notable are redblack trees, in which bottomup rebalancing after an insertion or deletion takes O(1) amortized time and O(1) rotations worstcase. But the design space of balanced
Verifying Balanced Trees
, 2007
"... Balanced search trees provide guaranteed worstcase time performance and hence they form a very important class of data structures. However,... ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Balanced search trees provide guaranteed worstcase time performance and hence they form a very important class of data structures. However,...
Load Balanced Tree Embeddings
, 1991
"... When an nprocessor architecture T is embedded into an mprocessor architecture H with n ? m and every processor of H simulates at least bn=mc and at most dn=me processors of T , the embedding has a balanced processor load. We present efficient embeddings with a balanced load for the case when both ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
architectures are complete binary trees. We show that T can be embedded into H with a dilation of 1 and a congestion of at most minfd n m e; 2 log ng. We also consider embeddings that achieve a balanced l/i load; i.e., every processor of H simulates at most d n+1 2m e leaves and at most d n\Gamma1 2m e
ENUMERATION OF HIGHLY BALANCED TREES
"... Bereg and Wang defined a new class of highly balanced dary trees which they call ktrees; these trees have the interesting property that the internal path length and thus the Wiener index can be calculated quite easily. A ktree is characterized by the property that all levels, except for the las ..."
Abstract
 Add to MetaCart
Bereg and Wang defined a new class of highly balanced dary trees which they call ktrees; these trees have the interesting property that the internal path length and thus the Wiener index can be calculated quite easily. A ktree is characterized by the property that all levels, except
Transactional Interferenceless Balanced Tree
"... Abstract. In this paper, we present TxCFTree, a balanced tree whose design is optimized to support transactional accesses. The core optimizations of TxCFTree’s operations are: providing a traversal phase that does not use any lock and/or speculation, and deferring the lock acquisition or physica ..."
Abstract
 Add to MetaCart
Abstract. In this paper, we present TxCFTree, a balanced tree whose design is optimized to support transactional accesses. The core optimizations of TxCFTree’s operations are: providing a traversal phase that does not use any lock and/or speculation, and deferring the lock acqui
Selfadjusting binary search trees
, 1985
"... The splay tree, a selfadjusting form of binary search tree, is developed and analyzed. The binary search tree is a data structure for representing tables and lists so that accessing, inserting, and deleting items is easy. On an nnode splay tree, all the standard search tree operations have an am ..."
Abstract

Cited by 432 (18 self)
 Add to MetaCart
an amortized time bound of O(log n) per operation, where by “amortized time ” is meant the time per operation averaged over a worstcase sequence of operations. Thus splay trees are as efficient as balanced trees when total running time is the measure of interest. In addition, for sufficiently long access
Fast updating of wellbalanced trees
 In SWAT 90, 2nd Scandinavian Workshop on Algorithm Theory
, 1990
"... Trees of optimal and nearoptimal height may be represented as a pointerfree structure in an array of size O(n). In this way we obtain an array implementation of a dictionary with O(log n) search cost and O(log2 n) update cost, allowing interpolation search to improve the expected search time. 1 In ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
comparisons per operation. This bound may be achieved by storing the set in a binary search tree of optimal height. Definition 1 A binary tree has optimal height if and only if the height of the tree is dlog(n + 1)e. A special case of a tree of optimal height is an optimally balanced tree, as defined below
Results 1  10
of
137,398