Results 1 - 10
of
14,448
Mining Generalized Association Rules
, 1995
"... We introduce the problem of mining generalized association rules. Given a large database of transactions, where each transaction consists of a set of items, and a taxonomy (is-a hierarchy) on the items, we find associations between items at any level of the taxonomy. For example, given a taxonomy th ..."
Abstract
-
Cited by 591 (7 self)
- Add to MetaCart
We introduce the problem of mining generalized association rules. Given a large database of transactions, where each transaction consists of a set of items, and a taxonomy (is-a hierarchy) on the items, we find associations between items at any level of the taxonomy. For example, given a taxonomy
Integrating classification and association rule mining
- In Proc of KDD
, 1998
"... Classification rule mining aims to discover a small set of rules in the database that forms an accurate classifier. Association rule mining finds all the rules existing in the database that satisfy some minimum support and minimum confidence constraints. For association rule mining, the target of di ..."
Abstract
-
Cited by 578 (21 self)
- Add to MetaCart
Classification rule mining aims to discover a small set of rules in the database that forms an accurate classifier. Association rule mining finds all the rules existing in the database that satisfy some minimum support and minimum confidence constraints. For association rule mining, the target
Sampling Large Databases for Association Rules
, 1996
"... Discovery of association rules is an important database mining problem. Current algorithms for nding association rules require several passes over the analyzed database, and obviously the role of I/O overhead is very signi cant for very large databases. We present new algorithms that reduce the data ..."
Abstract
-
Cited by 470 (3 self)
- Add to MetaCart
Discovery of association rules is an important database mining problem. Current algorithms for nding association rules require several passes over the analyzed database, and obviously the role of I/O overhead is very signi cant for very large databases. We present new algorithms that reduce
Fast Algorithms for Mining Association Rules
, 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract
-
Cited by 3612 (15 self)
- Add to MetaCart
We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known
Beyond Market Baskets: Generalizing Association Rules To Dependence Rules
, 1998
"... One of the more well-studied problems in data mining is the search for association rules in market basket data. Association rules are intended to identify patterns of the type: “A customer purchasing item A often also purchases item B. Motivated partly by the goal of generalizing beyond market bask ..."
Abstract
-
Cited by 634 (6 self)
- Add to MetaCart
One of the more well-studied problems in data mining is the search for association rules in market basket data. Association rules are intended to identify patterns of the type: “A customer purchasing item A often also purchases item B. Motivated partly by the goal of generalizing beyond market
Discovery of Multiple-Level Association Rules from Large Databases
- In Proc. 1995 Int. Conf. Very Large Data Bases
, 1995
"... Previous studies on mining association rules find rules at single concept level, however, mining association rules at multiple concept levels may lead to the discovery of more specific and concrete knowledge from data. In this study, a top-down progressive deepening method is developed for mining mu ..."
Abstract
-
Cited by 463 (34 self)
- Add to MetaCart
Previous studies on mining association rules find rules at single concept level, however, mining association rules at multiple concept levels may lead to the discovery of more specific and concrete knowledge from data. In this study, a top-down progressive deepening method is developed for mining
Mining Association Rules between Sets of Items in Large Databases
- IN: PROCEEDINGS OF THE 1993 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, WASHINGTON DC (USA
, 1993
"... We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel esti ..."
Abstract
-
Cited by 3331 (16 self)
- Add to MetaCart
We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel
Parallel Mining of Association Rules
- IEEE Transactions on Knowledge and Data Engineering
, 1996
"... We consider the problem of mining association rules on a shared-nothing multiprocessor. We present three algorithms that explore a spectrum of trade-offs between computation, communication, memory usage, synchronization, and the use of problem-specific information. The best algorithm exhibits near p ..."
Abstract
-
Cited by 325 (3 self)
- Add to MetaCart
We consider the problem of mining association rules on a shared-nothing multiprocessor. We present three algorithms that explore a spectrum of trade-offs between computation, communication, memory usage, synchronization, and the use of problem-specific information. The best algorithm exhibits near
Mining Quantitative Association Rules in Large Relational Tables
, 1996
"... We introduce the problem of mining association rules in large relational tables containing both quantitative and categorical attributes. An example of such an association might be "10% of married people between age 50 and 60 have at least 2 cars". We deal with quantitative attributes by fi ..."
Abstract
-
Cited by 444 (3 self)
- Add to MetaCart
We introduce the problem of mining association rules in large relational tables containing both quantitative and categorical attributes. An example of such an association might be "10% of married people between age 50 and 60 have at least 2 cars". We deal with quantitative attributes
An efficient algorithm for mining association rules in large databases
, 1995
"... Mining for a.ssociation rules between items in a large database of sales transactions has been described as an important database mining problem. In this paper we present an effi-cient algorithm for mining association rules that is fundamentally different from known al-gorithms. Compared to previous ..."
Abstract
-
Cited by 437 (0 self)
- Add to MetaCart
Mining for a.ssociation rules between items in a large database of sales transactions has been described as an important database mining problem. In this paper we present an effi-cient algorithm for mining association rules that is fundamentally different from known al-gorithms. Compared
Results 1 - 10
of
14,448