Results 1  10
of
1,737,102
An Approximation Ratio for Biclustering
, 2007
"... The problem of biclustering consists of the simultaneous clustering of rows and columns of a matrix such that each of the submatrices induced by a pair of row and column clusters is as uniform as possible. In this paper we approximate the optimal biclustering by applying oneway clustering algorithm ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
algorithms independently on the rows and on the columns of the input matrix. We show that such a solution yields a worstcase approximation ratio of 1+ √ 2 under L1norm for 0–1 valued matrices, and of 2 under L2norm for real valued matrices. Keywords: Approximation algorithms; Biclustering; One
THE BEST RANKONE APPROXIMATION RATIO
"... Abstract. In this paper we define the best rankone approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rankone approximation of any tensor in that tensor space and the norm of that tensor. ..."
Abstract
 Add to MetaCart
Abstract. In this paper we define the best rankone approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rankone approximation of any tensor in that tensor space and the norm of that tensor
An Improved Approximation Ratio for the Minimum Latency Problem
 Mathematical Programming
, 1996
"... Given a tour visiting n points in a metric space, the latency of one of these points p is the distance traveled in the tour before reaching p. The minimum latency problem asks for a tour passing through n given points for which the total latency of the n points is minimum; in effect, we are seekin ..."
Abstract

Cited by 87 (2 self)
 Add to MetaCart
such algorithm, obtaining an approximation ratio of 144. In this work, we present an algorithm which improves this ratio to 21:55. The dev...
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a
The space complexity of approximating the frequency moments
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract

Cited by 855 (12 self)
 Add to MetaCart
The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
hard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma
Tight bounds for the approximation ratio of the hypervolume indicator
 In Proc. 11th International Conference 29 Problem Solving from Nature (PPSN XI), volume 6238 of LNCS
, 2010
"... Abstract The hypervolume indicator is widely used to guide the search and to evaluate the performance of evolutionary multiobjective optimization algorithms. It measures the volume of the dominated portion of the objective space which is considered to give a good approximation of the Pareto front. ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
. There is surprisingly little theoretically known about the quality of this approximation. We examine the multiplicative approximation ratio achieved by twodimensional sets maximizing the hypervolume indicator and prove that it deviates significantly from the optimal approximation ratio. This provable gap is even
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
A Guided Tour to Approximate String Matching
 ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 584 (38 self)
 Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining the problem and its relevance, its statistical behavior, its history and current developments, and the central ideas of the algorithms and their complexities. We present a number of experiments to compare the performance of the different algorithms and show which are the best choices according to each case. We conclude with some future work directions and open problems.
Results 1  10
of
1,737,102