Results 1  10
of
1,124,732
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a
Systematic design of program analysis frameworks
 In 6th POPL
, 1979
"... Semantic analysis of programs is essential in optimizing compilers and program verification systems. It encompasses data flow analysis, data type determination, generation of approximate invariant ..."
Abstract

Cited by 771 (52 self)
 Add to MetaCart
Semantic analysis of programs is essential in optimizing compilers and program verification systems. It encompasses data flow analysis, data type determination, generation of approximate invariant
An Approximation Framework For Infinite
"... Traditional approaches to solving stochastic optimal control problems involve dynamic programming, and solving certain optimality equations. When recast as stochastic programming problems, structural aspects such as convexity are regained, and solution procedures based on decomposition and duality m ..."
Abstract
 Add to MetaCart
may be exploited. This paper explores a class of stationary, infinitehorizon stochastic optimization problems with discounted cost criterion in the framework of stochastic programming. Approximating techniques are developed, and intuitive lower bounds are obtained via averaging the future.
Fuzziness in Partial Approximation Framework
"... Abstract—In partial approximation spaces with Pawlakian approximation pairs, three partial membership functions are generated. These fuzzy functions rely on the lower and upper approximations of a set. They provide special type of fuzziness on the universe: all of them are partial functions and deri ..."
Abstract
 Add to MetaCart
Abstract—In partial approximation spaces with Pawlakian approximation pairs, three partial membership functions are generated. These fuzzy functions rely on the lower and upper approximations of a set. They provide special type of fuzziness on the universe: all of them are partial functions
The space complexity of approximating the frequency moments
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract

Cited by 855 (12 self)
 Add to MetaCart
The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly
Determining the Number of Factors in Approximate Factor Models
, 2000
"... In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors c ..."
Abstract

Cited by 538 (29 self)
 Add to MetaCart
can be consistently estimated using the criterion. The theory is developed under the framework of large crosssections (N) and large time dimensions (T). No restriction is imposed on the relation between N and T. Simulations show that the proposed criterion yields almost precise estimates
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae w.r.t the vertex set). Our graph property testing algorithms are probabilistic and make assertions which are correct with high probability, utilizing only poly(1=ffl) edgequeries into the graph, where ffl is the distance parameter. Moreover, the property testing algorithms can be used to efficiently (i.e., in time linear in the number of vertices) construct partitions of the graph which corre...
Valgrind: A framework for heavyweight dynamic binary instrumentation
 In Proceedings of the 2007 Programming Language Design and Implementation Conference
, 2007
"... Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI ha ..."
Abstract

Cited by 545 (5 self)
 Add to MetaCart
Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI
Results 1  10
of
1,124,732