Results 1  10
of
21,338
Determining the Number of Factors in Approximate Factor Models
, 2000
"... In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors c ..."
Abstract

Cited by 561 (30 self)
 Add to MetaCart
In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include
Greed is Good: Algorithmic Results for Sparse Approximation
, 2004
"... This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representa ..."
Abstract

Cited by 916 (9 self)
 Add to MetaCart
is an approximation algorithm for the sparse problem over a quasiincoherent dictionary. That is, for every input signal, OMP calculates a sparse approximant whose error is only a small factor worse than the minimal error that can be attained with the same number of terms.
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
 IEEE Transactions on Information Theory
, 2005
"... Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract

Cited by 585 (13 self)
 Add to MetaCart
that is exact when the factor graph is a tree, but only approximate when the factor graph has cycles. We show that BP fixed points correspond to the stationary points of the Bethe approximation of the free energy for a factor graph. We explain how to obtain regionbased free energy approximations that improve
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 984 (32 self)
 Add to MetaCart
positive real ffl, a data point p is a (1 + ffl)approximate nearest neighbor of q if its distance from q is within a factor of (1 + ffl) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in R d in O(dn log n) time and O(dn) space, so that given a
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1791 (69 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
A Test for the Number of Factors in an Approximate Factor Model
 JOURNAL OF FINANCE
, 1993
"... An important issue in applications of multifactor models of asset returns is the appropriate number of factors. Most extant tests for the number of factors are valid only for strict factor models, in which diversifiable returns are uncorrelated across assets. In this paper we develop a test statisti ..."
Abstract

Cited by 140 (10 self)
 Add to MetaCart
statistic to determine the number of factors in an approximate factor model of asset returns, which does not require that diversifiable components of returns be uncorrelated across assets. We find evidence for one to six pervasive factors in the crosssection of New York Stock Exchange and American Stock
Variational algorithms for approximate Bayesian inference
, 2003
"... The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents ..."
Abstract

Cited by 440 (9 self)
 Add to MetaCart
a unified variational Bayesian (VB) framework which approximates these computations in models with latent variables using a lower bound on the marginal likelihood. Chapter 1 presents background material on Bayesian inference, graphical models, and propagation algorithms. Chapter 2 forms
Learning lowlevel vision
 International Journal of Computer Vision
, 2000
"... We show a learningbased method for lowlevel vision problems. We setup a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently prop ..."
Abstract

Cited by 579 (30 self)
 Add to MetaCart
We show a learningbased method for lowlevel vision problems. We setup a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently
Localitysensitive hashing scheme based on pstable distributions
 In SCG ’04: Proceedings of the twentieth annual symposium on Computational geometry
, 2004
"... inÇÐÓ�Ò We present a novel LocalitySensitive Hashing scheme for the Approximate Nearest Neighbor Problem underÐÔnorm, based onÔstable distributions. Our scheme improves the running time of the earlier algorithm for the case of theÐnorm. It also yields the first known provably efficient approximate ..."
Abstract

Cited by 521 (8 self)
 Add to MetaCart
inÇÐÓ�Ò We present a novel LocalitySensitive Hashing scheme for the Approximate Nearest Neighbor Problem underÐÔnorm, based onÔstable distributions. Our scheme improves the running time of the earlier algorithm for the case of theÐnorm. It also yields the first known provably efficient approximate
Results 1  10
of
21,338