Results 1  10
of
1,743,640
A theory of shape by space carving
 In Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV99), volume I, pages 307– 314, Los Alamitos, CA
, 1999
"... In this paper we consider the problem of computing the 3D shape of an unknown, arbitrarilyshaped scene from multiple photographs taken at known but arbitrarilydistributed viewpoints. By studying the equivalence class of all 3D shapes that reproduce the input photographs, we prove the existence of a ..."
Abstract

Cited by 565 (14 self)
 Add to MetaCart
of a special member of this class, the photo hull, that (1) can be computed directly from photographs of the scene, and (2) subsumes all other members of this class. We then give a provablycorrect algorithm, called Space Carving, for computing this shape and present experimental results on complex
The space complexity of approximating the frequency moments
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract

Cited by 844 (12 self)
 Add to MetaCart
The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 997 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 983 (32 self)
 Add to MetaCart
positive real ffl, a data point p is a (1 + ffl)approximate nearest neighbor of q if its distance from q is within a factor of (1 + ffl) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in R d in O(dn log n) time and O(dn) space, so that given a
From Few to many: Illumination cone models for face recognition under variable lighting and pose
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a generative appearancebased method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a smal ..."
Abstract

Cited by 755 (12 self)
 Add to MetaCart
conditions. The pose space is then sampled, and for each pose the corresponding illumination cone is approximated by a lowdimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated
Fast approximate nearest neighbors with automatic algorithm configuration
 In VISAPP International Conference on Computer Vision Theory and Applications
, 2009
"... nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these highdimensional problems ..."
Abstract

Cited by 455 (2 self)
 Add to MetaCart
nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these high
Localitysensitive hashing scheme based on pstable distributions
 In SCG ’04: Proceedings of the twentieth annual symposium on Computational geometry
, 2004
"... inÇÐÓ�Ò We present a novel LocalitySensitive Hashing scheme for the Approximate Nearest Neighbor Problem underÐÔnorm, based onÔstable distributions. Our scheme improves the running time of the earlier algorithm for the case of theÐnorm. It also yields the first known provably efficient approximate ..."
Abstract

Cited by 522 (8 self)
 Add to MetaCart
inÇÐÓ�Ò We present a novel LocalitySensitive Hashing scheme for the Approximate Nearest Neighbor Problem underÐÔnorm, based onÔstable distributions. Our scheme improves the running time of the earlier algorithm for the case of theÐnorm. It also yields the first known provably efficient approximate
The algorithmic analysis of hybrid systems
 THEORETICAL COMPUTER SCIENCE
, 1995
"... We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamica ..."
Abstract

Cited by 778 (71 self)
 Add to MetaCart
to linear hybrid systems. In particular, we consider symbolic modelchecking and minimization procedures that are based on the reachability analysis of an infinite state space. The procedures iteratively compute state sets that are definable as unions of convex polyhedra in multidimensional real space. We
Data Streams: Algorithms and Applications
, 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract

Cited by 532 (22 self)
 Add to MetaCart
emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudorandom computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic
Large N field theories, string theory and gravity
, 2001
"... We review the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Antide Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evide ..."
Abstract

Cited by 1443 (45 self)
 Add to MetaCart
We review the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Antide Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations
Results 1  10
of
1,743,640