Results 1  10
of
1,484,559
Approximating discrete probability distributions with dependence trees
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1968
"... A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n variables ..."
Abstract

Cited by 874 (0 self)
 Add to MetaCart
A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n
Optimal approximation by piecewise smooth functions and associated variational problems
 Commun. Pure Applied Mathematics
, 1989
"... (Article begins on next page) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mumford, David Bryant, and Jayant Shah. 1989. Optimal approximations by piecewise smooth functions and associated variational problems. ..."
Abstract

Cited by 1290 (14 self)
 Add to MetaCart
(Article begins on next page) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mumford, David Bryant, and Jayant Shah. 1989. Optimal approximations by piecewise smooth functions and associated variational problems
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 983 (32 self)
 Add to MetaCart
positive real ffl, a data point p is a (1 + ffl)approximate nearest neighbor of q if its distance from q is within a factor of (1 + ffl) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in R d in O(dn log n) time and O(dn) space, so that given a
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a
Greed is Good: Algorithmic Results for Sparse Approximation
, 2004
"... This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representa ..."
Abstract

Cited by 916 (8 self)
 Add to MetaCart
This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Approximating Optimal Auctions
, 2005
"... We study a fundamental problem in micro economics called optimal auction design: A seller wishes to sell an item to a group of selfinterested agents. Each agent i has a privately known value for winning the object. Given a joint distribution of these values, the goal is to construct an optimal auct ..."
Abstract

Cited by 47 (2 self)
 Add to MetaCart
We study a fundamental problem in micro economics called optimal auction design: A seller wishes to sell an item to a group of selfinterested agents. Each agent i has a privately known value for winning the object. Given a joint distribution of these values, the goal is to construct an optimal
Some optimal inapproximability results
, 2002
"... We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for ..."
Abstract

Cited by 782 (12 self)
 Add to MetaCart
for the efficient approximability of many optimization problems studied previously. In particular, for MaxE2Sat, MaxCut, MaxdiCut, and Vertex cover. Warning: Essentially this paper has been published in JACM and is subject to copyright restrictions. In particular it is for personal use only.
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
hard. We prove that (1 \Gamma o(1)) ln n is a threshold below which set cover cannot be approximated efficiently, unless NP has slightly superpolynomial time algorithms. This closes the gap (up to low order terms) between the ratio of approximation achievable by the greedy algorithm (which is (1 \Gamma
Results 1  10
of
1,484,559