Results 11  20
of
1,373,833
Analysis of Recommendation Algorithms for ECommerce
, 2000
"... Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in ECommerce nowadays. In this paper, we investigate several techniques for analyzing largescale pu ..."
Abstract

Cited by 515 (26 self)
 Add to MetaCart
Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in ECommerce nowadays. In this paper, we investigate several techniques for analyzing large
A data locality optimizing algorithm
, 1991
"... 1 Introduction As processor speed continues to increase faster than memory speed, optimizations to use the memory hierarchy efficiently become ever more important. Blocking [9] ortiling [18] is a wellknown technique that improves the data locality of numerical algorithms [1, 6, 7, 12, 13].Tiling c ..."
Abstract

Cited by 805 (16 self)
 Add to MetaCart
1 Introduction As processor speed continues to increase faster than memory speed, optimizations to use the memory hierarchy efficiently become ever more important. Blocking [9] ortiling [18] is a wellknown technique that improves the data locality of numerical algorithms [1, 6, 7, 12, 13].Tiling
A learning algorithm for Boltzmann machines
 Cognitive Science
, 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract

Cited by 586 (13 self)
 Add to MetaCart
problem in o very short time. One kind of computation for which massively porollel networks appear to be well suited is large constraint satisfaction searches, but to use the connections efficiently two conditions must be met: First, a search technique that is suitable for parallel networks must be found
The Cache Performance and Optimizations of Blocked Algorithms
 In Proceedings of the Fourth International Conference on Architectural Support for Programming Languages and Operating Systems
, 1991
"... Blocking is a wellknown optimization technique for improving the effectiveness of memory hierarchies. Instead of operating on entire rows or columns of an array, blocked algorithms operate on submatrices or blocks, so that data loaded into the faster levels of the memory hierarchy are reused. This ..."
Abstract

Cited by 581 (4 self)
 Add to MetaCart
Blocking is a wellknown optimization technique for improving the effectiveness of memory hierarchies. Instead of operating on entire rows or columns of an array, blocked algorithms operate on submatrices or blocks, so that data loaded into the faster levels of the memory hierarchy are reused
Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
 Advances in Neural Information Processing Systems 14
, 2001
"... Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher ..."
Abstract

Cited by 664 (8 self)
 Add to MetaCart
Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a
A Survey of Program Slicing Techniques
 JOURNAL OF PROGRAMMING LANGUAGES
, 1995
"... A program slice consists of the parts of a program that (potentially) affect the values computed at some point of interest, referred to as a slicing criterion. The task of computing program slices is called program slicing. The original definition of a program slice was presented by Weiser in 197 ..."
Abstract

Cited by 777 (8 self)
 Add to MetaCart
A program slice consists of the parts of a program that (potentially) affect the values computed at some point of interest, referred to as a slicing criterion. The task of computing program slices is called program slicing. The original definition of a program slice was presented by Weiser in 1979. Since then, various slightly different notions of program slices have been proposed, as well as a number of methods to compute them. An important distinction is that between a static and a dynamic slice. The former notion is computed without making assumptions regarding a program's input, whereas the latter relies on some specific test case. Procedures, arbitrary control flow, composite datatypes and pointers, and interprocess communication each require a specific solution. We classify static and dynamic slicing methods for each of these features, and compare their accuracy and efficiency. Moreover, the possibilities for combining solutions for different features are investigated....
Algorithms for Nonnegative Matrix Factorization
 In NIPS
, 2001
"... Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minim ..."
Abstract

Cited by 1230 (5 self)
 Add to MetaCart
Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract

Cited by 707 (18 self)
 Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new
The StructureMapping Engine: Algorithm and Examples
 Artificial Intelligence
, 1989
"... This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract

Cited by 512 (115 self)
 Add to MetaCart
This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its
Results 11  20
of
1,373,833