Results 1  10
of
1,094,326
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
 IEEE Transactions on Information Theory
, 2005
"... Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract

Cited by 574 (13 self)
 Add to MetaCart
Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems
Marching cubes: A high resolution 3D surface construction algorithm
 COMPUTER GRAPHICS
, 1987
"... We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divideandconquer approach to generate interslice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical d ..."
Abstract

Cited by 2660 (4 self)
 Add to MetaCart
We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divideandconquer approach to generate interslice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical
The weighted majority algorithm
, 1992
"... We study the construction of prediction algorithms in a situation in which a learner faces a sequence of trials, with a prediction to be made in each, and the goal of the learner is to make few mistakes. We are interested in the case that the learner has reason to believe that one of some pool of kn ..."
Abstract

Cited by 854 (42 self)
 Add to MetaCart
We study the construction of prediction algorithms in a situation in which a learner faces a sequence of trials, with a prediction to be made in each, and the goal of the learner is to make few mistakes. We are interested in the case that the learner has reason to believe that one of some pool
Linear pattern matching algorithms
 IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE
, 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear ti ..."
Abstract

Cited by 541 (0 self)
 Add to MetaCart
time algorithm for obtaining a compacted version of a bitree associated with a given string is presented. With this construction as the basic tool, we indicate how to solve several pattern matching problems, including some from [4], in linear time.
The SmallWorld Phenomenon: An Algorithmic Perspective
 in Proceedings of the 32nd ACM Symposium on Theory of Computing
, 2000
"... Long a matter of folklore, the “smallworld phenomenon ” — the principle that we are all linked by short chains of acquaintances — was inaugurated as an area of experimental study in the social sciences through the pioneering work of Stanley Milgram in the 1960’s. This work was among the first to m ..."
Abstract

Cited by 811 (5 self)
 Add to MetaCart
to explain the striking algorithmic component of Milgram’s original findings: that individuals using local information are collectively very effective at actually constructing short paths between two points in a social network. Although recently proposed network models are rich in short paths, we prove
The StructureMapping Engine: Algorithm and Examples
 Artificial Intelligence
, 1989
"... This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract

Cited by 514 (115 self)
 Add to MetaCart
This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its
An experimental comparison of three methods for constructing ensembles of decision trees
 Bagging, boosting, and randomization. Machine Learning
, 2000
"... Abstract. Bagging and boosting are methods that generate a diverse ensemble of classifiers by manipulating the training data given to a “base ” learning algorithm. Breiman has pointed out that they rely for their effectiveness on the instability of the base learning algorithm. An alternative approac ..."
Abstract

Cited by 601 (6 self)
 Add to MetaCart
Abstract. Bagging and boosting are methods that generate a diverse ensemble of classifiers by manipulating the training data given to a “base ” learning algorithm. Breiman has pointed out that they rely for their effectiveness on the instability of the base learning algorithm. An alternative
Algorithms for Scalable Synchronization on SharedMemory Multiprocessors
 ACM Transactions on Computer Systems
, 1991
"... Busywait techniques are heavily used for mutual exclusion and barrier synchronization in sharedmemory parallel programs. Unfortunately, typical implementations of busywaiting tend to produce large amounts of memory and interconnect contention, introducing performance bottlenecks that become marke ..."
Abstract

Cited by 563 (32 self)
 Add to MetaCart
markedly more pronounced as applications scale. We argue that this problem is not fundamental, and that one can in fact construct busywait synchronization algorithms that induce no memory or interconnect contention. The key to these algorithms is for every processor to spin on separate locally
AN n 5/2 ALGORITHM FOR MAXIMUM MATCHINGS IN BIPARTITE GRAPHS
, 1973
"... The present paper shows how to construct a maximum matching in a bipartite graph with n vertices and m edges in a number of computation steps proportional to (m + n)x/. ..."
Abstract

Cited by 688 (1 self)
 Add to MetaCart
The present paper shows how to construct a maximum matching in a bipartite graph with n vertices and m edges in a number of computation steps proportional to (m + n)x/.
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2033 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
Results 1  10
of
1,094,326