Results 11  20
of
936,089
Graph Theory
 MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH REPORT NO. 16/2007
, 2007
"... This week broadly targeted both finite and infinite graph theory, as well as matroids, including their interaction with other areas of pure mathematics. The talks were complemented by informal workshops focussing on specific problems or particularly active areas. ..."
Abstract

Cited by 1182 (5 self)
 Add to MetaCart
This week broadly targeted both finite and infinite graph theory, as well as matroids, including their interaction with other areas of pure mathematics. The talks were complemented by informal workshops focussing on specific problems or particularly active areas.
Books in graphs
, 2008
"... A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) ..."
Abstract

Cited by 2380 (22 self)
 Add to MetaCart
A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α
Representation Theory of Artin Algebras
 Studies in Advanced Mathematics
, 1994
"... The representation theory of artin algebras, as we understand it today, is a relatively new area of mathematics, as most of the main developments have occurred ..."
Abstract

Cited by 657 (10 self)
 Add to MetaCart
The representation theory of artin algebras, as we understand it today, is a relatively new area of mathematics, as most of the main developments have occurred
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems
Consensus Problems in Networks of Agents with Switching Topology and TimeDelays
, 2003
"... In this paper, we discuss consensus problems for a network of dynamic agents with fixed and switching topologies. We analyze three cases: i) networks with switching topology and no timedelays, ii) networks with fixed topology and communication timedelays, and iii) maxconsensus problems (or leader ..."
Abstract

Cited by 1052 (17 self)
 Add to MetaCart
in convergence analysis of consensus protocols. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Ktheory for operator algebras
 Mathematical Sciences Research Institute Publications
, 1998
"... p. XII line5: since p. 12: I blew this simple formula: should be α = −〈ξ, η〉/〈η, η〉. p. 2 I.1.1.4: The RieszFischer Theorem is often stated this way today, but neither Riesz nor Fischer (who worked independently) phrased it in terms of completeness of the orthogonal system {e int}. If [a, b] is a ..."
Abstract

Cited by 559 (0 self)
 Add to MetaCart
p. XII line5: since p. 12: I blew this simple formula: should be α = −〈ξ, η〉/〈η, η〉. p. 2 I.1.1.4: The RieszFischer Theorem is often stated this way today, but neither Riesz nor Fischer (who worked independently) phrased it in terms of completeness of the orthogonal system {e int}. If [a, b] is a bounded interval in R, in modern language the original statement of the theorem was that L 2 ([a, b]) is complete and abstractly isomorphic to l 2. According to [Jah03, p. 385], the name “Hilbert space ” was first used in 1908 by A. Schönflies, apparently to refer to what we today call l 2. Von Neumann used the same name for Hilbert spaces in the modern sense (complete inner product spaces), which he defined in 1928. p. 3 line6: At the end of the line, 2ɛ should be 4ɛ. p. 3 I.1.2.3: The statement that a dense subspace of a Hilbert space H contains an orthonormal basis for H can be false if H is nonseparable. In fact, I. Farah (private communication) has shown that a Hilbert space of dimension 2ℵ0 has a dense subspace which does not contain any uncountable orthonormal set. A similar example was obtained by Dixmier [Dix53]. p. 89 I.2.4.3(i): Some of the statements on p. 9 can be false if the measure space is not σfinite. p. 13: add after I.2.6.16: I.2.6.17. If X is a compact subset of C not containing 0, and k ∈ N, there is in general no bound on the norm of T −1 as T ranges over all operators with ‖T ‖ ≤ k and σ(T) ⊆ X. For example, let Sn ∈ L(l 2) be the truncated shift: Sn(α1, α2,...) = (0, α1, α2,..., αn, 0, 0,...) and let Tn = I − Sn. ‖Sn ‖ = 1, so ‖Tn ‖ ≤ 2 for all n. Since Sn is nilpotent, σ(Sn) = {0}, so σ(Tn) = {1} for all n. Tn is invertible, with T −1 n = I + Sn + ξ1 ‖ = √ n + 1, so ‖T −1
Objectoriented Design of a Class Library for a Metamodel based on Algebraic Graph Theory
"... Formal concepts of a metamodel based on algebraic graph theory are represented as software abstractions by classes in an objectoriented programming language. The metamodel provides the basis for a representation of different modeling techniques like semantic data models and Petri nets and evolution ..."
Abstract
 Add to MetaCart
Formal concepts of a metamodel based on algebraic graph theory are represented as software abstractions by classes in an objectoriented programming language. The metamodel provides the basis for a representation of different modeling techniques like semantic data models and Petri nets
Results 11  20
of
936,089