• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 7,567
Next 10 →

Agnostic bayesian learning of ensembles

by Alexandre Lacoste, Hugo Larochelle, Mario Marchand - In Proceedings of The 31st International Conference on Machine Learning , 2014
"... We propose a method for producing ensembles of predictors based on holdout estimations of their generalization performances. This approach uses a prior directly on the performance of predictors taken from a finite set of candidates and attempts to infer which one is best. Using Bayesian infer-ence, ..."
Abstract - Cited by 1 (1 self) - Add to MetaCart
-formance and does not assume that the data was actually generated from any of the predictors in the ensemble. Since the problem of finding the best (as opposed to the true) predictor among a class is known as agnostic PAC-learning, we re-fer to our method as agnostic Bayesian learning. We also propose a method

A tutorial on learning with Bayesian networks

by David Heckerman - LEARNING IN GRAPHICAL MODELS , 1995
"... ..."
Abstract - Cited by 1069 (3 self) - Add to MetaCart
Abstract not found

Learning Bayesian networks: The combination of knowledge and statistical data

by David Heckerman, David M. Chickering - Machine Learning , 1995
"... We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simpl ..."
Abstract - Cited by 1158 (35 self) - Add to MetaCart
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly

Sparse Bayesian Learning and the Relevance Vector Machine

by Michael E. Tipping , 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vect ..."
Abstract - Cited by 966 (5 self) - Add to MetaCart
vector machine’ (RVM), a model of identical functional form to the popular and state-of-the-art `support vector machine ’ (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer basis

Dynamic Bayesian Networks: Representation, Inference and Learning

by Kevin Patrick Murphy , 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract - Cited by 770 (3 self) - Add to MetaCart
been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete

Bayesian Network Classifiers

by Nir Friedman, Dan Geiger, Moises Goldszmidt , 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract - Cited by 796 (20 self) - Add to MetaCart
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less

A bayesian hierarchical model for learning natural scene categories

by Li Fei-fei - In CVPR , 2005
"... We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each region ..."
Abstract - Cited by 948 (15 self) - Add to MetaCart
We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each

Using Bayesian networks to analyze expression data

by Nir Friedman, Michal Linial, Iftach Nachman - Journal of Computational Biology , 2000
"... DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biologica ..."
Abstract - Cited by 1088 (17 self) - Add to MetaCart
by showing how Bayesian networks can describe interactions between genes. We then describe a method for recovering gene interactions from microarray data using tools for learning Bayesian networks. Finally, we demonstrate this method on the S. cerevisiae cell-cycle measurements of Spellman et al. (1998). Key

A Practical Bayesian Framework for Backprop Networks

by David J.C. MacKay - Neural Computation , 1991
"... A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures ..."
Abstract - Cited by 494 (19 self) - Add to MetaCart
A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures

A Bayesian approach to filtering junk E-mail

by Mehran Sahami, Susan Dumais, David Heckerman, Eric Horvitz - PAPERS FROM THE 1998 WORKSHOP, AAAI , 1998
"... In addressing the growing problem of junk E-mail on the Internet, we examine methods for the automated construction of filters to eliminate such unwanted messages from a user’s mail stream. By casting this problem in a decision theoretic framework, we are able to make use of probabilistic learning m ..."
Abstract - Cited by 545 (6 self) - Add to MetaCart
In addressing the growing problem of junk E-mail on the Internet, we examine methods for the automated construction of filters to eliminate such unwanted messages from a user’s mail stream. By casting this problem in a decision theoretic framework, we are able to make use of probabilistic learning
Next 10 →
Results 1 - 10 of 7,567
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University