Results 1  10
of
1,867
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization,”
 SIAM Review,
, 2010
"... Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and col ..."
Abstract

Cited by 562 (20 self)
 Add to MetaCart
Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 555 (22 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task
Robust principal component analysis?
 Journal of the ACM,
, 2011
"... Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the ..."
Abstract

Cited by 569 (26 self)
 Add to MetaCart
Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank
A Rank Minimization Heuristic with Application to Minimum Order System Approximation
, 2001
"... Several problems arising in control system analysis and design, such as reduced order controller synthesis, involve minimizing the rank of a matrix variable subject to linear matrix inequality (LMI) constraints. Except in some special cases, solving this rank minimization probiem (globally) is ve ..."
Abstract

Cited by 274 (10 self)
 Add to MetaCart
Several problems arising in control system analysis and design, such as reduced order controller synthesis, involve minimizing the rank of a matrix variable subject to linear matrix inequality (LMI) constraints. Except in some special cases, solving this rank minimization probiem (globally
Informationtheoretic metric learning
 in NIPS 2006 Workshop on Learning to Compare Examples
, 2007
"... We formulate the metric learning problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the Mahalanobis distance function. Via a surprising equivalence, we show that this problem can be solved as a lowrank kernel learning problem. Spe ..."
Abstract

Cited by 359 (15 self)
 Add to MetaCart
We formulate the metric learning problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the Mahalanobis distance function. Via a surprising equivalence, we show that this problem can be solved as a lowrank kernel learning problem
The Power of Convex Relaxation: NearOptimal Matrix Completion
, 2009
"... This paper is concerned with the problem of recovering an unknown matrix from a small fraction of its entries. This is known as the matrix completion problem, and comes up in a great number of applications, including the famous Netflix Prize and other similar questions in collaborative filtering. In ..."
Abstract

Cited by 359 (7 self)
 Add to MetaCart
of rank r by any method, and to be sure, nuclear norm minimization succeeds as soon as the number of entries is of the form nrpolylog(n).
Necessary and Sufficient Conditions for Success of the Nuclear Norm Heuristic for Rank Minimization
, 2008
"... Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in control theory, machine learning, and discrete geometry. This class of optimization problems, known as rank minimization, is NPHARD, and for most practical problems there are no effic ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
finds the minimum rank solution of a linear constraint set. We additionally provide a probability distribution over instances of the affine rank minimization problem such that instances sampled from this distribution satisfy our conditions for success with overwhelming probability provided the number
Aggregating inconsistent information: ranking and clustering
, 2005
"... We address optimization problems in which we are given contradictory pieces of input information and the goal is to find a globally consistent solution that minimizes the number of disagreements with the respective inputs. Specifically, the problems we address are rank aggregation, the feedback arc ..."
Abstract

Cited by 226 (17 self)
 Add to MetaCart
We address optimization problems in which we are given contradictory pieces of input information and the goal is to find a globally consistent solution that minimizes the number of disagreements with the respective inputs. Specifically, the problems we address are rank aggregation, the feedback arc
Ranksparsity incoherence for matrix decomposition
, 2010
"... Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown lowrank matrix. Our goal is to decompose the given matrix into its sparse and lowrank components. Such a problem arises in a number of applications in model and system identification, and is intractable ..."
Abstract

Cited by 230 (21 self)
 Add to MetaCart
Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown lowrank matrix. Our goal is to decompose the given matrix into its sparse and lowrank components. Such a problem arises in a number of applications in model and system identification, and is intractable
Necessary and Sufficient Conditions for Success of the Nuclear Norm Heuristic for Rank Minimization
"... Abstract — Rank minimization–minimizing the rank of a matrix subject to constraints–is a challenging problem that arises in many control applications including controller design, realization theory and model reduction. The general formulation of rank minimization subject to convex constraints is NP ..."
Abstract
 Add to MetaCart
finds the minimum rank solution of a linear constraint set. We further show that most of the problems of interest in control can be formulated as rank minimization subject to such linear constraints. We additionally provide a probability distribution over instances of the affine rank minimization
Results 1  10
of
1,867