### TABLE III SPACE-TIME CHANNEL PARAMETERS.

### TABLE V RLS Implementation of Centralized Space-Time Detector with Fixed Space-Time Constraints

### TABLE VII RLS Implementation of Space-Time Detector with Optimized Space-Time Constraints

### Table 1: System Parameters of BPSK with space-time transmit diversity

"... In PAGE 3: ....5 Numerical Results................................................................................................31 Table1 : System Parameters of BPSK with space-time transmit diversity.... ..."

### Table 2: System Parameters of MQAM with space-time transmit diversity

"... In PAGE 3: ...able 1: System Parameters of BPSK with space-time transmit diversity......................40 Table2 : System Parameters of MQAM with space-time transmit diversity.... In PAGE 40: ... BER performance of MQAM with or without STTD under Rayleigh fading channel is presented in [46]. Table2 shows the system parameters that are used here ... ..."

### Table 1. Coverage probabilities and expected lengths of nominal 95% con dence intervals for the log odds ratio, for binomial samples with n1 = n2 = 10 and parameters p1 and p2.

"... In PAGE 3: ... Tables 1 and 2 show typical results. Table1 refers to nominal 95% con dence intervals when the data result from two independent binomial samples of sizes n1 = n2 = 10 with various choices for the binomial... In PAGE 4: ...he odds ratio itself are 59.9 for the Woolf interval, 31.8 for the Gart interval, and 250.8 for the exact interval. Table1 reveals that, considering the small sample size, the logit methods behave surprisingly well for these parameter settings. Their coverage probabilities exceed the nominal con dence level.... In PAGE 4: ... With both of these logit intervals, underestimation of j log j (the true log odds ratio falling farther from 0 than the interval bounds) is much more common than overestimation, the discrepancy being somewhat larger for the Gart interval. For the 8 cases summarized in Table1 for which p1 6 = p2, for instance, the average probability of underestimation was .013 for the Woolf interval and .... ..."

### Table 1: Minimum Space-Time Products [MB*s]

1994

Cited by 35

### Table 2: Minimum Space-Time Products [MB*s]

1994

Cited by 35

### Table 1: The power law parameter s and scale factor ( ) for some special spacetimes.

in PERTURBATIVE QUANTUM GRAVITY AND NEWTON'S LAW ON A FLAT ROBERTSON-WALKER BACKGROUND J. Iliopoulos

"... In PAGE 17: ...N(k) = 12 p s 1?s 0 k? 1?3s 2(1?s) ; (3:62) so that: ( ; k; I) = 12 p ?1( ) H(2) I (k ) ; I = A; B; C ; (3:63a) ?( ; k; I) = 1 2 p ?1( ) H(1) I (k ) ; I = A; B; C : (3:63b) The basic parameter values of the most physically interesting power laws are displayed in Table1 . The kinds of Hankel functions generated by in ation, matter, radiation and atness are presented in Table 2 and their functional form in Table 3.... In PAGE 22: ...78) and the de nition: (x ? x0)2 ( x ? j j + i ) ( x + j j ? i ) ; (3:79) we can express i I (x; x0) in a more economical form: i 1 2 (x; x0) = 1 4 2 ( ) ( 0) 1 (x ? x0)2 ; (3:80) i 3 2 (x; x0) = 1 8 2 ( ) ( 0) 0 2 0 (x ? x0)2 ? ln h k2 0(x ? x0)2i ? 2( ? 1) ; (3:81) i 5 2 (x; x0) = 1 8 2 ( ) 2 ( 0) 02 2 2 02 (x ? x0)2 + 3 2 h (x ? x0)2 ? 2 0i ln h k2 0(x ? x0)2i + 9k?2 0 ? 112 ( x)2 + 9 2( )2 + 6 0 + 3 h (x ? x0)2 ? 2 0i ; (3:82) i 7 2 (x; x0) = 1 16 2 ( ) 3 ( 0) 03 4 3 03 (x ? x0)2 ? h154 (x ? x0)4 ? 5(x ? x0)2 0 + 12 2 02i ln h k2 0(x ? x0)2i + 2 + 225k?4 0 ? h 75( x)2 ? 45( )2 ? 90 0i k?2 0 + h1378 ( x)4 ? 1254 ( x)2( )2 + 1058 ( )4i ? h 55( x)2 ? 45( )2i 0 + 24 2 02 : (3:83) Step III. To obtain the explicit form of the scalar, pseudo-graviton and mixed propa- gators for the power laws of Table1 , we only need to appropriately substitute the above expressions in equations (3.... In PAGE 25: ...However, in the case of the power law scale factors of Table1 we get: i h i s=0(x; x0) = i 12 (x; x0) h ? 0 0 i = 1 4 2 1 (x ? x0)2 ; (3:96) i h i s=12 (x; x0) = i 1 2 (x; x0) ? i 32 (x; x0) 0 0 = 2 0 8 2 2 0 2 2 0 (x ? x0)2 + ln h k2 0(x ? x0)2i + 2( ? 1) 0 0 ; (3:97) i h i s=2 3 (x; x0) = i 32 (x; x0) ? i 52 (x; x0) 0 0 = 4 0 8 2 3 0 3 2 0 (x ? x0)2 ? ln h k2 0(x ? x0)2i + 2( ? 1) ? 4 0 8 2 4 0 4 h 3 2(x ? x0)2 ? 2 0 i ln h k2 0(x ? x0)2i + 2 + 4 0 + 9 k2 0 ? 112 ( x)2 + 92( )2 0 0 : (3:98) i h i s=+1(x; x0) = i 3 2 (x; x0) ? i 12 (x; x0) 0 0 = 1 8 2 2 0 2 0 (x ? x0)2 ? ln h k2 0(x ? x0)2i + 2( ? 1) ; (3:99) Again, when s = +1 , there is agreement with the previously obtained result in de Sitter spacetime [3].... ..."