Results 1  10
of
1,199,684
Additive Logistic Regression: a Statistical View of Boosting
 Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract

Cited by 1719 (25 self)
 Add to MetaCart
be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived
ADDITIVE LOGISTIC REGRESSION APPLIED TO RETINA MODELLING
"... The accurate modelling of the human visual system, particularly of the retina, would be a great achievement and a big step in the development of visual prostheses. Several methods and algorithms have been proposed to accomplish such a difficult task, mainly to what concerns the adaptation and nonlin ..."
Abstract
 Add to MetaCart
and nonlinear mechanisms of the retina. This paper presents the results obtained by the employment of additive logistic regression techniques to model the nonlinear block of a canonical LinearNonlinearPoisson retina model, considering the spike triggering process from a statistical point of view, complemented
SemiSupervised Additive Logistic Regression: A Gradient Descent Solution
, 2007
"... This paper describes a semisupervised regularized method for additive logistic regression. The graph regularization term of the combined functions is added to the original cost functional used in AdaBoost. This term constrains the learned function to be smooth on a graph. Then the gradient solution ..."
Abstract
 Add to MetaCart
This paper describes a semisupervised regularized method for additive logistic regression. The graph regularization term of the combined functions is added to the original cost functional used in AdaBoost. This term constrains the learned function to be smooth on a graph. Then the gradient
Special invited paper. additive logistic regression: A statistical view of boosting
 The Annals of Statistics
, 2000
"... Boosting is one of the most important recent developments in classification methodology. Boosting works by sequentially applying a classification algorithm to reweighted versions of the training data and then taking a weighted majority vote of the sequence of classifiers thus produced. For many clas ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived that exhibit
Discussion of the Paper "Additive Logistic Regression: A Statistical View of Boosting" by Jerome Friedman, Trevor Hastie and Robert Tibshirani
, 2000
"... this paper is in establishing a connection between boosting, a newcomer to the statistics scene, and additive models. ..."
Abstract
 Add to MetaCart
this paper is in establishing a connection between boosting, a newcomer to the statistics scene, and additive models.
Regression quantiles
 Econometrica
, 1978
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 870 (19 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Generalized Additive Models
, 1984
"... Likelihood based regression models, such as the normal linear regression model and the linear logistic model, assume a linear (or some other parametric) form for the covariate effects. We introduce the Local Scotinq procedure which replaces the liner form C Xjpj by a sum of smooth functions C Sj(Xj) ..."
Abstract

Cited by 2413 (46 self)
 Add to MetaCart
Likelihood based regression models, such as the normal linear regression model and the linear logistic model, assume a linear (or some other parametric) form for the covariate effects. We introduce the Local Scotinq procedure which replaces the liner form C Xjpj by a sum of smooth functions C Sj
On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes
, 2001
"... We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of performance as the training set size is i ..."
Abstract

Cited by 513 (8 self)
 Add to MetaCart
We compare discriminative and generative learning as typified by logistic regression and naive Bayes. We show, contrary to a widely held belief that discriminative classifiers are almost always to be preferred, that there can often be two distinct regimes of performance as the training set size
Regression Shrinkage and Selection Via the Lasso
 Journal of the Royal Statistical Society, Series B
, 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract

Cited by 4055 (51 self)
 Add to MetaCart
that are exactly zero and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also
Results 1  10
of
1,199,684