Results 1  10
of
1,109,093
Trust, but verify: Fast and accurate signal recovery from 1bit compressive measurements
, 2010
"... Abstract—The recently emerged compressive sensing (CS) framework aims to acquire signals at reduced sample rates compared to the classical ShannonNyquist rate. To date, the CS theory has assumed primarily realvalued measurements; it has recently been demonstrated that accurate and stable signal ac ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
Abstract—The recently emerged compressive sensing (CS) framework aims to acquire signals at reduced sample rates compared to the classical ShannonNyquist rate. To date, the CS theory has assumed primarily realvalued measurements; it has recently been demonstrated that accurate and stable signal
Stable signal recovery from incomplete and inaccurate measurements,”
 Comm. Pure Appl. Math.,
, 2006
"... Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y? To r ..."
Abstract

Cited by 1368 (38 self)
 Add to MetaCart
Abstract Suppose we wish to recover a vector x 0 ∈ R m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax 0 + e; A is an n × m matrix with far fewer rows than columns (n m) and e is an error term. Is it possible to recover x 0 accurately based on the data y
Using the kernel trick in compressive sensing: Accurate signal recovery from fewer measurements
 in IEEE Int. Conf. on Acoustics, Speech and Signal Proc
, 2011
"... Compressive sensing accurately reconstructs a signal that is sparse in some basis from measurements, generally consisting of the signal’s inner products with Gaussian random vectors. The number of measurements needed is based on the sparsity of the signal, allowing for signal recovery from far fewer ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Compressive sensing accurately reconstructs a signal that is sparse in some basis from measurements, generally consisting of the signal’s inner products with Gaussian random vectors. The number of measurements needed is based on the sparsity of the signal, allowing for signal recovery from far
SIGNAL RECOVERY BY PROXIMAL FORWARDBACKWARD SPLITTING
 MULTISCALE MODEL. SIMUL. TO APPEAR
"... We show that various inverse problems in signal recovery can be formulated as the generic problem of minimizing the sum of two convex functions with certain regularity properties. This formulation makes it possible to derive existence, uniqueness, characterization, and stability results in a unifi ..."
Abstract

Cited by 498 (23 self)
 Add to MetaCart
We show that various inverse problems in signal recovery can be formulated as the generic problem of minimizing the sum of two convex functions with certain regularity properties. This formulation makes it possible to derive existence, uniqueness, characterization, and stability results in a
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
 California Institute of Technology, Pasadena
, 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract

Cited by 749 (13 self)
 Add to MetaCart
Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery
Signal recovery from random measurements via Orthogonal Matching Pursuit
 IEEE TRANS. INFORM. THEORY
, 2007
"... This technical report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive improvement over previous ..."
Abstract

Cited by 779 (9 self)
 Add to MetaCart
previous results for OMP, which require O(m 2) measurements. The new results for OMP are comparable with recent results for another algorithm called Basis Pursuit (BP). The OMP algorithm is faster and easier to implement, which makes it an attractive alternative to BP for signal recovery problems.
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1487 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 478 (2 self)
 Add to MetaCart
that has been contaminated with additive noise, the goal is to identify which elementary signals participated and to approximate their coefficients. Although many algorithms have been proposed, there is little theory which guarantees that these algorithms can accurately and efficiently solve the problem
Stable recovery of sparse overcomplete representations in the presence of noise
 IEEE TRANS. INFORM. THEORY
, 2006
"... Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes t ..."
Abstract

Cited by 452 (21 self)
 Add to MetaCart
the possibility of stable recovery under a combination of sufficient sparsity and favorable structure of the overcomplete system. Considering an ideal underlying signal that has a sufficiently sparse representation, it is assumed that only a noisy version of it can be observed. Assuming further
A tutorial on particle filters for online nonlinear/nonGaussian Bayesian tracking
 IEEE TRANSACTIONS ON SIGNAL PROCESSING
, 2002
"... Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and nonGaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data online as it arrives, both from the point of view o ..."
Abstract

Cited by 1976 (2 self)
 Add to MetaCart
Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and nonGaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data online as it arrives, both from the point of view
Results 1  10
of
1,109,093