• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 4,505
Next 10 →

Adaptive floating search methods in feature selection

by P. Somol , P. Pudil , J. Novovicova , P. Paclik - PATTERN RECOGNITION LETTERS , 1999
"... A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer to the opti ..."
Abstract - Cited by 548 (21 self) - Add to MetaCart
A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer

A New Method for Solving Hard Satisfiability Problems

by Bart Selman, Hector Levesque, David Mitchell - AAAI , 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract - Cited by 730 (21 self) - Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional

The BSD Packet Filter: A New Architecture for User-level Packet Capture

by Steven Mccanne, Van Jacobson , 1992
"... Many versions of Unix provide facilities for user-level packet capture, making possible the use of general purpose workstations for network monitoring. Because network monitors run as user-level processes, packets must be copied across the kernel/user-space protection boundary. This copying can be m ..."
Abstract - Cited by 568 (2 self) - Add to MetaCart
be minimized by deploying a kernel agent called a packet filter, which discards unwanted packets as early as possible. The original Unix packet filter was designed around a stack-based filter evaluator that performs sub-optimally on current RISC CPUs. The BSD Packet Filter (BPF) uses a new, registerbased

A New Statistical Parser Based on Bigram Lexical Dependencies

by Michael John Collins , 1996
"... This paper describes a new statistical parser which is based on probabilities of dependencies between head-words in the parse tree. Standard bigram probability estimation techniques are extended to calculate probabilities of dependencies between pairs of words. Tests using Wall Street Journal ..."
Abstract - Cited by 490 (4 self) - Add to MetaCart
This paper describes a new statistical parser which is based on probabilities of dependencies between head-words in the parse tree. Standard bigram probability estimation techniques are extended to calculate probabilities of dependencies between pairs of words. Tests using Wall Street

An Efficient Boosting Algorithm for Combining Preferences

by Raj Dharmarajan Iyer , Jr. , 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract - Cited by 727 (18 self) - Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new

Internet Advertising and the Generalized Second Price Auction: Selling Billions of Dollars Worth of Keywords

by Benjamin Edelman, Michael Ostrovsky, Michael Schwarz - AMERICAN ECONOMIC REVIEW , 2007
"... We investigate the “generalized second-price” (GSP) auction, a new mechanism used by search engines to sell online advertising. Although GSP looks similar to the Vickrey-Clarke-Groves (VCG) mechanism, its properties are very different. Unlike the VCG mechanism, GSP generally does not have an equilib ..."
Abstract - Cited by 555 (18 self) - Add to MetaCart
We investigate the “generalized second-price” (GSP) auction, a new mechanism used by search engines to sell online advertising. Although GSP looks similar to the Vickrey-Clarke-Groves (VCG) mechanism, its properties are very different. Unlike the VCG mechanism, GSP generally does not have

gSpan: Graph-Based Substructure Pattern Mining

by Xifeng Yan, Jiawei Han , 2002
"... We investigate new approaches for frequent graph-based pattern mining in graph datasets and propose a novel algorithm called gSpan (graph-based Substructure pattern mining) , which discovers frequent substructures without candidate generation. gSpan builds a new lexicographic order among graphs, and ..."
Abstract - Cited by 650 (34 self) - Add to MetaCart
, and maps each graph to a unique minimum DFS code as its canonical label. Based on this lexicographic order, gSpan adopts the depth-first search strategy to mine frequent connected subgraphs efficiently. Our performance study shows that gSpan substantially outperforms previous algorithms, sometimes

Chaff: Engineering an Efficient SAT Solver

by Matthew W. Moskewicz , Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik , 2001
"... Boolean Satisfiability is probably the most studied of combinatorial optimization/search problems. Significant effort has been devoted to trying to provide practical solutions to this problem for problem instances encountered in a range of applications in Electronic Design Automation (EDA), as well ..."
Abstract - Cited by 1350 (18 self) - Add to MetaCart
. In this paper we describe the development of a new complete solver, Chaff, which achieves significant performance gains through careful engineering of all aspects of the search – especially a particularly efficient implementation of Boolean constraint propagation (BCP) and a novel low overhead decision strategy

Tabu Search -- Part II

by Fred Glover , 1990
"... This is the second half of a two part series devoted to the tabu search metastrategy for optimization problems. Part I introduced the fundamental ideas of tabu search as an approach for guiding other heuristics to overcome the limitations of local optimality, both in a deterministic and a probabilis ..."
Abstract - Cited by 387 (5 self) - Add to MetaCart
refinements and more advanced aspects of tabu search. Following a brief review of notation, Part I1 introduces new dynamic strategies for managing tabu lists, allowing fuller exploitation of underlying evaluation functions. In turn, the elements of staged search and structured move sets are characterized

Local Search Strategies for Satisfiability Testing

by Bart Selman, Henry Kautz, Bram Cohen - DIMACS SERIES IN DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE , 1995
"... It has recently been shown that local search is surprisingly good at finding satisfying assignments for certain classes of CNF formulas [24]. In this paper we demonstrate that the power of local search for satisfiability testing can be further enhanced by employinga new strategy, called "mixed ..."
Abstract - Cited by 311 (28 self) - Add to MetaCart
It has recently been shown that local search is surprisingly good at finding satisfying assignments for certain classes of CNF formulas [24]. In this paper we demonstrate that the power of local search for satisfiability testing can be further enhanced by employinga new strategy, called "
Next 10 →
Results 1 - 10 of 4,505
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University