Results 1  10
of
1,338
Proofs that Yield Nothing but Their Validity or All Languages in NP Have ZeroKnowledge Proof Systems
 JOURNAL OF THE ACM
, 1991
"... In this paper the generality and wide applicability of Zeroknowledge proofs, a notion introduced by Goldwasser, Micali, and Rackoff is demonstrated. These are probabilistic and interactive proofs that, for the members of a language, efficiently demonstrate membership in the language without convey ..."
Abstract

Cited by 427 (43 self)
 Add to MetaCart
conveying any additional knowledge. All previously known zeroknowledge proofs were only for numbertheoretic languages in NP fl CONP. Under the assumption that secure encryption functions exist or by using “physical means for hiding information, ‘ ‘ it is shown that all languages in NP have zero
Probabilistic checking of proofs: a new characterization of NP
 JOURNAL OF THE ACM
, 1998
"... We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof ..."
Abstract

Cited by 414 (26 self)
 Add to MetaCart
We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts
The English Noun Phrase in its Sentential Aspect
 PH.D. DISSERTATION MIT
, 1987
"... This dissertation is a defense of the hypothesis that the noun phrase is headed by a functional element (i.e., "nonlexical" category) D, identified with the determiner. In this way, the structure of the noun phrase parallels that of the sentence, which is headed by Infl(ection), under ass ..."
Abstract

Cited by 532 (4 self)
 Add to MetaCart
phrases. The problem of capturing this dual aspect of the Possing construction is heightened by current restrictive views of Xbar theory, which, in particular, rule out the obvious structure for Possing, [ NP NP VP ing ], by virtue of its exocentricity. Consideration of languages in which nouns, even
The DLV System for Knowledge Representation and Reasoning
 ACM Transactions on Computational Logic
, 2002
"... Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believ ..."
Abstract

Cited by 456 (102 self)
 Add to MetaCart
believed assumptions, DLP is strictly more expressive than normal (disjunctionfree) logic programming, whose expressiveness is limited to properties decidable in NP. Importantly, apart from enlarging the class of applications which can be encoded in the language, disjunction often allows for representing
If NP languages are hard on the worstcase then it is easy to find their hard instances
"... We prove that if NP 6 ` BPP, i.e., if some NPcomplete language is worstcase hard, then for every probabilistic algorithm trying to decide the language,there exists some polynomially samplable distribution that is hard for it. That is, the algorithm often errs on inputs from this distribution. Th ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
We prove that if NP 6 ` BPP, i.e., if some NPcomplete language is worstcase hard, then for every probabilistic algorithm trying to decide the language,there exists some polynomially samplable distribution that is hard for it. That is, the algorithm often errs on inputs from this distribution
A SubConstant ErrorProbability LowDegree Test, and a SubConstant ErrorProbability PCP Characterization of NP
 IN PROC. 29TH ACM SYMP. ON THEORY OF COMPUTING, 475484. EL PASO
, 1997
"... We introduce a new lowdegreetest, one that uses the restriction of lowdegree polynomials to planes (i.e., affine subspaces of dimension 2), rather than the restriction to lines (i.e., affine subspaces of dimension 1). We prove the new test to be of a very small errorprobability (in particular, ..."
Abstract

Cited by 324 (20 self)
 Add to MetaCart
, much smaller than constant). The new test enables us to prove a lowerror characterization of NP in terms of PCP. Specifically, our theorem states that, for any given ffl ? 0, membership in any NP language can be verified with O(1) accesses, each reading logarithmic number of bits
NonDeterministic Exponential Time has TwoProver Interactive Protocols
"... We determine the exact power of twoprover interactive proof systems introduced by BenOr, Goldwasser, Kilian, and Wigderson (1988). In this system, two allpowerful noncommunicating provers convince a randomizing polynomial time verifier in polynomial time that the input z belongs to the language ..."
Abstract

Cited by 416 (37 self)
 Add to MetaCart
to the language L. It was previously suspected (and proved in a relativized sense) that coNPcomplete languages do not admit such proof systems. In sharp contrast, we show that the class of languages having twoprover interactive proof systems is nondeterministic exponential time. After the recent results
A Safe Approximate Algorithm for Interprocedural Pointer Aliasing
, 1992
"... Aliasing occurs at some program point during execution when two or more names exist for the same location. In a language which allows pointers, the problem of determining the set of pairs of names at a program point which may refer to the same location during program execution is NPhard. We present ..."
Abstract

Cited by 351 (31 self)
 Add to MetaCart
Aliasing occurs at some program point during execution when two or more names exist for the same location. In a language which allows pointers, the problem of determining the set of pairs of names at a program point which may refer to the same location during program execution is NPhard. We
Results 1  10
of
1,338