Results 1 - 10
of
21,244
Consistency of spectral clustering
, 2004
"... Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spe ..."
Abstract
-
Cited by 572 (15 self)
- Add to MetaCart
of spectral clustering algorithms, which cluster the data with the help of eigenvectors of graph Laplacian matrices. We show that one of the two of major classes of spectral clustering (normalized clustering) converges under some very general conditions, while the other (unnormalized), is only consistent
Longitudinal data analysis using generalized linear models”.
- Biometrika,
, 1986
"... SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence. The estimating ..."
Abstract
-
Cited by 1526 (8 self)
- Add to MetaCart
SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence
Spatio-temporal energy models for the Perception of Motion
- J. OPT. SOC. AM. A
, 1985
"... A motion sequence may be represented as a single pattern in x-y-t space; a velocity of motion corresponds to a three-dimensional orientation in this space. Motion sinformation can be extracted by a system that responds to the oriented spatiotemporal energy. We discuss a class of models for human mot ..."
Abstract
-
Cited by 904 (9 self)
- Add to MetaCart
A motion sequence may be represented as a single pattern in x-y-t space; a velocity of motion corresponds to a three-dimensional orientation in this space. Motion sinformation can be extracted by a system that responds to the oriented spatiotemporal energy. We discuss a class of models for human
Hierarchical Models of Object Recognition in Cortex
, 1999
"... The classical model of visual processing in cortex is a hierarchy of increasingly sophisticated representations, extending in a natural way the model of simple to complex cells of Hubel and Wiesel. Somewhat surprisingly, little quantitative modeling has been done in the last 15 years to explore th ..."
Abstract
-
Cited by 836 (84 self)
- Add to MetaCart
the biological feasibility of this class of models to explain higher level visual processing, such as object recognition. We describe a new hierarchical model that accounts well for this complex visual task, is consistent with several recent physiological experiments in inferotemporal cortex and makes testable
A Theory of the Learnable
, 1984
"... Humans appear to be able to learn new concepts without needing to be programmed explicitly in any conventional sense. In this paper we regard learning as the phenomenon of knowledge acquisition in the absence of explicit programming. We give a precise methodology for studying this phenomenon from ..."
Abstract
-
Cited by 1985 (15 self)
- Add to MetaCart
a computational viewpoint. It consists of choosing an appropriate information gathering mechanism, the learning protocol, and exploring the class of concepts that can be learnt using it in a reasonable (polynomial) number of steps. We find that inherent algorithmic complexity appears to set serious
Probabilistic Latent Semantic Analysis
- In Proc. of Uncertainty in Artificial Intelligence, UAI’99
, 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract
-
Cited by 771 (9 self)
- Add to MetaCart
Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occurrence tables, the proposed method is based on a mixture decomposition derived from a latent class model. This results in a more principled approach which has a solid foundation in statistics. In order
The algorithmic analysis of hybrid systems
- THEORETICAL COMPUTER SCIENCE
, 1995
"... We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamica ..."
Abstract
-
Cited by 778 (71 self)
- Add to MetaCart
We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according
Imagenet classification with deep convolutional neural networks.
- In Advances in the Neural Information Processing System,
, 2012
"... Abstract We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the pr ..."
Abstract
-
Cited by 1010 (11 self)
- Add to MetaCart
Abstract We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than
The nesC language: A holistic approach to networked embedded systems
- In Proceedings of Programming Language Design and Implementation (PLDI
, 2003
"... We present nesC, a programming language for networked embedded systems that represent a new design space for application developers. An example of a networked embedded system is a sensor network, which consists of (potentially) thousands of tiny, lowpower “motes, ” each of which execute concurrent, ..."
Abstract
-
Cited by 943 (48 self)
- Add to MetaCart
We present nesC, a programming language for networked embedded systems that represent a new design space for application developers. An example of a networked embedded system is a sensor network, which consists of (potentially) thousands of tiny, lowpower “motes, ” each of which execute concurrent
Unsupervised Learning by Probabilistic Latent Semantic Analysis
- Machine Learning
, 2001
"... Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of co-occurren ..."
Abstract
-
Cited by 618 (4 self)
- Add to MetaCart
-occurrence tables, the proposed technique uses a generative latent class model to perform a probabilistic mixture decomposition. This results in a more principled approach with a solid foundation in statistical inference. More precisely, we propose to make use of a temperature controlled version of the Expectation
Results 1 - 10
of
21,244