Results 1 - 10
of
9,707
Topology Control of Multihop Wireless Networks using Transmit Power Adjustment
, 2000
"... We consider the problem of adjusting the transmit powers of nodes in a multihop wireless network (also called an ad hoc network) to create a desired topology. We formulate it as a constrained optimization problem with two constraints- connectivity and biconnectivity, and one optimization objective- ..."
Abstract
-
Cited by 688 (3 self)
- Add to MetaCart
- maximum power used. We present two centralized algorithms for use in static networks, and prove their optimality. For mobile networks, we present two distributed heuristics that adaptively adjust node transmit powers in response to topological changes and attempt to maintain a connected topology using
Hierarchical mixtures of experts and the EM algorithm
, 1993
"... We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a max-imum likelihood ..."
Abstract
-
Cited by 885 (21 self)
- Add to MetaCart
problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parame-ters of the architecture. We also develop an on-line learning algorithm in which the pa-rameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.
A Fast Quantum Mechanical Algorithm for Database Search
- ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1996
"... Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a supe ..."
Abstract
-
Cited by 1135 (10 self)
- Add to MetaCart
superposition of states and simultaneously examine multiple names. By properly adjusting the phases of various operations, successful computations reinforce each other while others interfere randomly. As a result, the desired phone number can be obtained in only steps. The algorithm is within a small constant
A training algorithm for optimal margin classifiers
- PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract
-
Cited by 1865 (43 self)
- Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters
Optimization Flow Control, I: Basic Algorithm and Convergence
- IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract
-
Cited by 694 (64 self)
- Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
CURE: An Efficient Clustering Algorithm for Large Data sets
- Published in the Proceedings of the ACM SIGMOD Conference
, 1998
"... Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering ..."
Abstract
-
Cited by 722 (5 self)
- Add to MetaCart
Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract
-
Cited by 2182 (27 self)
- Add to MetaCart
. The core of this method is a simple hill-climbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distance-based method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment
Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to Schema Matching
, 2002
"... Matching elements of two data schemas or two data instances plays a key role in data warehousing, e-business, or even biochemical applications. In this paper we present a matching algorithm based on a fixpoint computation that is usable across different scenarios. The algorithm takes two graphs (sch ..."
Abstract
-
Cited by 592 (12 self)
- Add to MetaCart
(schemas, catalogs, or other data structures) as input, and produces as output a mapping between corresponding nodes of the graphs. Depending on the matching goal, a subset of the mapping is chosen using filters. After our algorithm runs, we expect a human to check and if necessary adjust the results. As a
The cascade-correlation learning architecture
- Advances in Neural Information Processing Systems 2
, 1990
"... Cascade-Correlation is a new architecture and supervised learning algorithm for artificial neural networks. Instead of just adjusting the weights in a network of fixed topology, Cascade-Correlation begins with a minimal network, then automatically trains and adds new hidden units one by one, creatin ..."
Abstract
-
Cited by 801 (6 self)
- Add to MetaCart
Cascade-Correlation is a new architecture and supervised learning algorithm for artificial neural networks. Instead of just adjusting the weights in a network of fixed topology, Cascade-Correlation begins with a minimal network, then automatically trains and adds new hidden units one by one
Energy Conserving Routing in Wireless Ad-hoc Networks
, 2000
"... An ad-hoc network of wireless static nodes is considered as it arises in a rapidly deployed, sensor based, monitoring system. Information is generated in certain nodes and needs to reach a set of designated gateway nodes. Each node may adjust its power within a certain range that determines the set ..."
Abstract
-
Cited by 622 (2 self)
- Add to MetaCart
An ad-hoc network of wireless static nodes is considered as it arises in a rapidly deployed, sensor based, monitoring system. Information is generated in certain nodes and needs to reach a set of designated gateway nodes. Each node may adjust its power within a certain range that determines
Results 1 - 10
of
9,707