### Table 2 Large MIP Statistics

2000

"... In PAGE 21: ... With these exceptions, one might characterize the resulting test-set as the models that appeared to be di cult but solvable, assuming tuning was allowed. Statistics for the 80 models in the test-set are given in Table2 in the appendix (\GIs quot; stands for general integer variables). For the present paper, we made several kinds of runs.... In PAGE 29: ...29 Table2 (continued) Large MIP Statistics Model Rows Columns Binaries GIs MIP31 2291 1992 174 12 MIP32 6256 8537 197 0 MIP33 1392 1224 240 168 MIP34 1392 1224 240 168 MIP35 1248 1224 384 336 MIP36 1368 1152 216 168 MIP37 1224 1152 336 336 MIP38 2407 1214 802 0 MIP39 3147 2505 388 1 MIP40 192 845 845 0 MIP41 1799 1008 0 1008 MIP42 43 51 0 39 MIP43 146 578 444 0 MIP44 2094 5592 443 3212 MIP45 684 1564 235 0 MIP46 68 151 150 0 MIP47 13 151 150 0 MIP48 12 151 150 0 MIP49 148 1280 1280 0 MIP50 788 645 140 0 MIP51 212 260 259 0 MIP52 2054 10724 10724 0 MIP53 908 129 31 0 MIP54 4480 10958 96 0 MIP55 291 422 98 0 MIP56 2280 1090 0 1090 MIP57 36 87482 87482 0 MIP58 176 548 548 0 MIP59 755 2756 2756 0 MIP60 45 86 55 0 MIP61 246 240 64 0 MIP62 1192 840 48 0 MIP63 2984 1451 1451 0 MIP64 291 556 300 15 MIP65 249 690 690 0 MIP66 314 5111 41 0 MIP67 20022 17665 17664 0 MIP68 23259 29342 13215 0 MIP69 524 1197 1100 96 MIP70 331 45 45 0 MIP71 146 578 444 0 MIP72 42 17419 17419 0 MIP73 3228 15541 15540 0 MIP74 1359 1959 0 1959 MIP75 234 378 168 0 MIP76 234 378 168 0 MIP77 4277 2417 1364 0 MIP78 845 3345 235 0 MIP79 10108 3836 1862 0 MIP80 27 26306 26306... ..."

Cited by 26

### Table 1- Cycle counts and speedups on MIPS and MIPS-like NISCs.

in Utilizing horizontal and vertical parallelism with no-instruction-set compiler for custom datapaths

2005

"... In PAGE 5: ... Because of their similar datapath, the clock periods of these architectures are similar. For MIPS, NM1, and NM2, Table1 shows the execution cycle counts of benchmarks and their corresponding speedups vs. MIPS.... ..."

Cited by 2

### Table 2 Large MIP Statistics

"... In PAGE 21: ... With these exceptions, one mightcharacterize the resulting test-set as the models that appeared to be di#0Ecult but solvable, assuming tuning was allowed. Statistics for the 80 models in the test-set are given in Table2 in the appendix #28#5CGIs quot; stands for general integer variables#29. For the present paper, we made several kinds of runs.... In PAGE 29: ...29 Table2 #28continued#29 Large MIP Statistics Model Rows Columns Binaries GIs MIP31 2291 1992 174 12 MIP32 6256 8537 197 0 MIP33 1392 1224 240 168 MIP34 1392 1224 240 168 MIP35 1248 1224 384 336 MIP36 1368 1152 216 168 MIP37 1224 1152 336 336 MIP38 2407 1214 802 0 MIP39 3147 2505 388 1 MIP40 192 845 845 0 MIP41 1799 1008 0 1008 MIP42 43 51 0 39 MIP43 146 578 444 0 MIP44 2094 5592 443 3212 MIP45 684 1564 235 0 MIP46 68 151 150 0 MIP47 13 151 150 0 MIP48 12 151 150 0 MIP49 148 1280 1280 0 MIP50 788 645 140 0 MIP51 212 260 259 0 MIP52 2054 10724 10724 0 MIP53 908 129 31 0 MIP54 4480 10958 96 0 MIP55 291 422 98 0 MIP56 2280 1090 0 1090 MIP57 36 87482 87482 0 MIP58 176 548 548 0 MIP59 755 2756 2756 0 MIP60 45 86 55 0 MIP61 246 240 64 0 MIP62 1192 840 48 0 MIP63 2984 1451 1451 0 MIP64 291 556 300 15 MIP65 249 690 690 0 MIP66 314 5111 41 0 MIP67 20022 17665 17664 0 MIP68 23259 29342 13215 0 MIP69 524 1197 1100 96 MIP70 331 45 45 0 MIP71 146 578 444 0 MIP72 42 17419 17419 0 MIP73 3228 15541 15540 0 MIP74 1359 1959 0 1959 MIP75 234 378 168 0 MIP76 234 378 168 0 MIP77 4277 2417 1364 0 MIP78 845 3345 235 0 MIP79 10108 3836 1862 0 MIP80 27 26306 26306... ..."

### Table 2: The MIP store of the MIP models. MIP store 2-HSP PPP CAP SPP

"... In PAGE 17: ... Tables 2 and 3 represent the number of rows, columns, non-zeros and binary variables of the mathematical model in CPLEX after crossing the linear constraints from the MIP store. In Table2 , the MIP store is the result of the automatic translation using auxiliary variables. Modelling of the k-Hoist Scheduling Problem: The problem can be represented by dis- junctive constraints over non-binary variables.... In PAGE 18: ... This model is appropriate for the CLP solver. A model for the MIP solver is derived by using our translator (see Table2 ). The main reason for a large number of translated constraints and variables for the Progressive Party Problem is the translation of link constraints between binary and non-binary variables.... In PAGE 21: ...4 A comparison: the CLP solver on the translated CLP model versus the MIP solver on the translated CLP model The proposed automatic translation does not guarantee the \best quot; model either for the MIP solver or for the CLP solver. An example of such a model for the MIP solver is the MIP store of the translated CLP constraints for the Progressive Party Problem (see Table2 ). The main reason for such a large number of constraints and variables was the... ..."

### Table 2- Cycles and speedups on MIPS and MIPS-like NISCs.

### Table 1: System states for MIP

2000

"... In PAGE 4: ...air, we de ne the states w.r.t a speci c LAN to which the Foreign Agent (FAj) is connected. All possible system states are listed in Table1 . The various timers modeled are listed in Table 2.... ..."

Cited by 2